簡介
在本教程中,我們將對PBMC的兩個scATAC-seq數據集(5K和10K)和一個scRNA-seq數據集進行整合分析。這三個數據集均來自10X genomics測序平臺產生的數據,可以直接在10x官網下載使用。
具體來說,我們將主要執行以下分析內容:
- Cell selection for PBMC 5k and 10k scATAC;
- Randomly sample 10,000 cells as landmarks;
- Unsupervised clustering of landmarks;
- Project the remaining (query) cells onto the landmarks;
- Supervised annotation of scATAC clusters using scRNA dataset;
- Downstream analysis including peak calling, differential analysis, prediction of gene-enhancer pairing.
分析步驟
- Step 0. Data download
- Step 1. Barcode selection
- Step 2. Add cell-by-bin matrix
- Step 3. Matrix binarization
- Step 4. Bin filtering
- Step 5. Dimensionality reduction of landmarks
- Step 6. Determine significant components
- Step 7. Graph-based clustering
- Step 8. Visualization
- Step 9. scRNA-seq based annotation
- Step 10. Create psudo multiomics cells
- Step 11. Remove cells of low prediction score
- Step 12. Gene expression projected into UMAP
- Step 13. Identify peak
- Step 14. Create a cell-by-peak matrix
- Step 15. Identify differentially accessible regions
- Step 16. Motif variability analysis
- Step 17. De novo motif discovery
- Step 18. Predict gene-enhancer pairs
Step 0. Data Download
開始分析之前,我們需要下載snaptools生成的snap文件和cellranger-atac產生的singlecell.csv文件。
# 下載所需的數據集和基因注釋信息
$ wget http://renlab.sdsc.edu/r3fang//share/github/PBMC_ATAC_RNA/atac_pbmc_5k_nextgem.snap
$ wget http://cf.10xgenomics.com/samples/cell-atac/1.1.0/atac_pbmc_5k_nextgem/atac_pbmc_5k_nextgem_singlecell.csv
$ wget http://renlab.sdsc.edu/r3fang//share/github/PBMC_ATAC_RNA/atac_pbmc_10k_nextgem.snap
$ wget http://cf.10xgenomics.com/samples/cell-atac/1.1.0/atac_pbmc_10k_nextgem/atac_pbmc_10k_nextgem_singlecell.csv
$ wget http://cf.10xgenomics.com/samples/cell-atac/1.1.0/atac_pbmc_10k_nextgem/hg19.blacklist.bed.gz
$ wget http://cf.10xgenomics.com/samples/cell-atac/1.1.0/gencode.v19.annotation.gene.bed
Step 1. Barcode selection
首先,我們根據以下兩個主要的標準來選擇高質量的barcodes:
- number of unique fragments;
- fragments in promoter ratio;
# 加載所需R包
> library(SnapATAC);
> snap.files = c(
"atac_pbmc_5k_nextgem.snap",
"atac_pbmc_10k_nextgem.snap"
);
> sample.names = c(
"PBMC 5K",
"PBMC 10K"
);
> barcode.files = c(
"atac_pbmc_5k_nextgem_singlecell.csv",
"atac_pbmc_10k_nextgem_singlecell.csv"
);
# 讀取snap文件
> x.sp.ls = lapply(seq(snap.files), function(i){
createSnap(
file=snap.files[i],
sample=sample.names[i]
);
})
> names(x.sp.ls) = sample.names;
# 讀取barcode信息
> barcode.ls = lapply(seq(snap.files), function(i){
barcodes = read.csv(
barcode.files[i],
head=TRUE
);
# remove NO BAROCDE line
barcodes = barcodes[2:nrow(barcodes),];
barcodes$logUMI = log10(barcodes$passed_filters + 1);
barcodes$promoter_ratio = (barcodes$promoter_region_fragments+1) / (barcodes$passed_filters + 1);
barcodes
})
# 質控指標數據可視化
> plots = lapply(seq(snap.files), function(i){
p1 = ggplot(
barcode.ls[[i]],
aes(x=logUMI, y=promoter_ratio)) +
geom_point(size=0.3, col="grey") +
theme_classic() +
ggtitle(sample.names[[i]]) +
ylim(0, 1) + xlim(0, 6) +
labs(x = "log10(UMI)", y="promoter ratio")
p1
})
> plots
# 查看snap對象信息
> x.sp.ls
## $`PBMC 5K`
## number of barcodes: 20000
## number of bins: 0
## number of genes: 0
## number of peaks: 0
## number of motifs: 0
##
## $`PBMC 10K`
## number of barcodes: 20000
## number of bins: 0
## number of genes: 0
## number of peaks: 0
## number of motifs: 0
# for both datasets, we identify usable barcodes using [3.5-5] for log10(UMI) and [0.4-0.8] for promoter ratio as cutoff.
# 設定質控閾值進行篩選過濾
> cutoff.logUMI.low = c(3.5, 3.5);
> cutoff.logUMI.high = c(5, 5);
> cutoff.FRIP.low = c(0.4, 0.4);
> cutoff.FRIP.high = c(0.8, 0.8);
# 根據過濾的閾值進行barcode的篩選
> barcode.ls = lapply(seq(snap.files), function(i){
barcodes = barcode.ls[[i]];
idx = which(
barcodes$logUMI >= cutoff.logUMI.low[i] &
barcodes$logUMI <= cutoff.logUMI.high[i] &
barcodes$promoter_ratio >= cutoff.FRIP.low[i] &
barcodes$promoter_ratio <= cutoff.FRIP.high[i]
);
barcodes[idx,]
});
> x.sp.ls = lapply(seq(snap.files), function(i){
barcodes = barcode.ls[[i]];
x.sp = x.sp.ls[[i]];
barcode.shared = intersect(x.sp@barcode, barcodes$barcode);
x.sp = x.sp[match(barcode.shared, x.sp@barcode),];
barcodes = barcodes[match(barcode.shared, barcodes$barcode),];
x.sp@metaData = barcodes;
x.sp
})
> names(x.sp.ls) = sample.names;
> x.sp.ls
## $`PBMC 5K`
## number of barcodes: 4526
## number of bins: 0
## number of genes: 0
## number of peaks: 0
## number of motifs: 0
##
## $`PBMC 10K`
## number of barcodes: 9039
## number of bins: 0
## number of genes: 0
## number of peaks: 0
## number of motifs: 0
# combine two snap object
# combine two snap object
# 使用Reduce函數將兩個snap對象進行合并
> x.sp = Reduce(snapRbind, x.sp.ls);
> x.sp@metaData["sample"] = x.sp@sample;
> x.sp
## number of barcodes: 13565
## number of bins: 0
## number of genes: 0
## number of peaks: 0
> table(x.sp@sample);
## PBMC 10K PBMC 5K
## 9039 4526
Step 2. Add cell-by-bin matrix
接下來,我們使用addBmatToSnap函數生成5kb分辨率的cell-by-bin計數矩陣,并將其添加到snap對象中。該函數將自動從兩個snap文件中讀取cell-by-bin矩陣,并將連接后的矩陣添加到snap對象的bmat屬性中。
# 使用addBmatToSnap函數計算cell-by-bin計數矩陣
> x.sp = addBmatToSnap(x.sp, bin.size=5000);
Step 3. Matrix binarization
我們使用makeBinary函數將cell-by-bin計數矩陣轉換為二進制矩陣。在count矩陣中,某些項具有異常高的覆蓋率,這可能是由比對錯誤造成的。因此,我們將刪除計數矩陣中top 0.1%的項,并將其余非零的值轉換為1。
# 使用makeBinary函數將cell-by-bin計數矩陣轉換成二進制矩陣
> x.sp = makeBinary(x.sp, mat="bmat");
Step 4. Bin filtering
首先,我們過濾掉任何與ENCODE中blacklist區域重疊的bins,以防止潛在的artifacts。
> library(GenomicRanges);
# 讀取blacklist信息
> black_list = read.table("hg19.blacklist.bed.gz");
> black_list.gr = GRanges(
black_list[,1],
IRanges(black_list[,2], black_list[,3])
);
> idy = queryHits(
findOverlaps(x.sp@feature, black_list.gr)
);
> if(length(idy) > 0){
x.sp = x.sp[,-idy, mat="bmat"];
};
> x.sp
## number of barcodes: 13565
## number of bins: 624794
## number of genes: 0
## number of peaks: 0
## number of motifs: 0
接下來,我們移除那些不需要的染色體信息。
> chr.exclude = seqlevels(x.sp@feature)[grep("random|chrM", seqlevels(x.sp@feature))];
> idy = grep(paste(chr.exclude, collapse="|"), x.sp@feature);
> if(length(idy) > 0){
x.sp = x.sp[,-idy, mat="bmat"]
};
> x.sp
## number of barcodes: 13565
## number of bins: 624297
## number of genes: 0
## number of peaks: 0
## number of motifs: 0
第三,bins的覆蓋率大致是服從對數正態分布的。我們將與不變特征(如管家基因的啟動子)重疊的前5%的bins進行刪除 。
> bin.cov = log10(Matrix::colSums(x.sp@bmat)+1);
> hist(
bin.cov[bin.cov > 0],
xlab="log10(bin cov)",
main="log10(Bin Cov)",
col="lightblue",
xlim=c(0, 5)
);
> bin.cutoff = quantile(bin.cov[bin.cov > 0], 0.95);
> idy = which(bin.cov <= bin.cutoff & bin.cov > 0);
> x.sp = x.sp[, idy, mat="bmat"];
> x.sp
## number of barcodes: 13565
## number of bins: 534985
## number of genes: 0
## number of peaks: 0
## number of motifs: 0
最后,我們將進一步刪除bin覆蓋率小于1000的任何細胞,這是因為盡管有些細胞可能含有較高的unique fragments片段,但是過濾后的bin覆蓋率卻很低。此步驟是可選的,但強烈建議這樣做。
> idx = which(Matrix::rowSums(x.sp@bmat) > 1000);
> x.sp = x.sp[idx,];
> x.sp
## number of barcodes: 13434
## number of bins: 534985
## number of genes: 0
## number of peaks: 0
## number of motifs: 0
Step 5. Dimentionality reduction
SnapATAC采用diffusion maps算法進行數據降維,這是一種非線性降維的技術,它通過對數據執行random walk來發現低維的manifold,并且對噪音和擾動具有很強的魯棒性。
但是,diffusion maps算法的計算成本會隨著細胞數目的增加而呈現指數級增長的趨勢。為了克服這一局限,我們將Nystr?m方法(a sampling technique)和diffusion maps算法相結合,給出Nystr?m Landmark diffusion map來生成大規模數據集的低維嵌入。
Nystr?m landmark diffusion maps算法主要包括以下三個步驟:
-
sampling
: sample a subset of K (K?N) cells from N total cells as “landmarks”. Instead of random sampling, here we adopted a density-based sampling approach developed in SCTransform to preserve the density distribution of the N original points; -
embedding
: compute a diffusion map embedding for K landmarks; -
extension
: project the remaining N-K cells onto the low-dimensional embedding as learned from the landmarks to create a joint embedding space for all cells.
在本示例中,我們將采樣10,000個細胞作為landmarks,并將余下的query細胞投射到嵌入landmarks的diffusion maps上。
> row.covs.dens <- density(
x = x.sp@metaData[,"logUMI"],
bw = 'nrd', adjust = 1
);
> sampling_prob <- 1 / (approx(x = row.covs.dens$x, y = row.covs.dens$y, xout = x.sp@metaData[,"logUMI"])$y + .Machine$double.eps);
> set.seed(1);
> idx.landmark.ds <- sort(sample(x = seq(nrow(x.sp)), size = 10000, prob = sampling_prob));
將x.sp對象分割為landmark(x.landmark.sp)細胞和query(x.query.sp)細胞。
> x.landmark.sp = x.sp[idx.landmark.ds,];
> x.query.sp = x.sp[-idx.landmark.ds,];
Run diffusion maps on the landmark cells.
使用landmark細胞進行diffusion maps降維處理
> x.landmark.sp = runDiffusionMaps(
obj= x.landmark.sp,
input.mat="bmat",
num.eigs=50
);
> x.landmark.sp@metaData$landmark = 1;
Porject query cells to landmarks.
將query細胞映射到landmarks上
> x.query.sp = runDiffusionMapsExtension(
obj1=x.landmark.sp,
obj2=x.query.sp,
input.mat="bmat"
);
> x.query.sp@metaData$landmark = 0;
Combine landmark and query cells.
合并landmark和query細胞
Note: To merge snap objects, all the matrix (bmat, gmat, pmat) and metaData must be of the same number of columns between snap objects.
> x.sp = snapRbind(x.landmark.sp, x.query.sp);
> x.sp = x.sp[order(x.sp@metaData[,"sample"])]; #IMPORTANT
Step 6. Determine significant components
接下來,我們將確定特征向量(eigen-vectors)的數目,以便用于后續的分析。在下面的例子中,我們選擇前15個特征向量。
> plotDimReductPW(
obj=x.sp,
eigs.dims=1:50,
point.size=0.3,
point.color="grey",
point.shape=19,
point.alpha=0.6,
down.sample=5000,
pdf.file.name=NULL,
pdf.height=7,
pdf.width=7
);
Step 7. Graph-based clustering
接下來,我們使用所選的特征向量成分,來構造K近鄰(KNN)聚類圖。其中,每個節點是一個細胞,根據歐氏距離來確定每個細胞的k個近鄰細胞。
> x.sp = runKNN(
obj=x.sp,
eigs.dims=1:20,
k=15
);
> library(leiden);
> x.sp=runCluster(
obj=x.sp,
tmp.folder=tempdir(),
louvain.lib="leiden",
seed.use=10,
resolution=0.7
);
Step 8. Visualization
SnapATAC可以使用tSNE(FI-tsne)和UMAP方法對降維聚類后的細胞進行可視化的展示和探索。在本示例中,我們使用UMAP方法進行展示。
> library(umap);
> x.sp = runViz(
obj=x.sp,
tmp.folder=tempdir(),
dims=2,
eigs.dims=1:20,
method="umap",
seed.use=10
);
> par(mfrow = c(2, 2));
> plotViz(
obj= x.sp,
method="umap",
main="Cluster",
point.color=x.sp@cluster,
point.size=0.2,
point.shape=19,
text.add=TRUE,
text.size=1,
text.color="black",
down.sample=10000,
legend.add=FALSE
);
> plotFeatureSingle(
obj=x.sp,
feature.value=x.sp@metaData[,"logUMI"],
method="umap",
main="Read Depth",
point.size=0.2,
point.shape=19,
down.sample=10000,
quantiles=c(0.01, 0.99)
);
> plotViz(
obj= x.sp,
method="umap",
main="Sample",
point.size=0.2,
point.shape=19,
point.color=x.sp@sample,
text.add=FALSE,
text.size=1.5,
text.color="black",
down.sample=10000,
legend.add=TRUE
);
> plotViz(
obj= x.sp,
method="umap",
main="Landmark",
point.size=0.2,
point.shape=19,
point.color=x.sp@metaData[,"landmark"],
text.add=FALSE,
text.size=1.5,
text.color="black",
down.sample=10000,
legend.add=TRUE
);
Step 9. scRNA-seq based annotation
在本示例中,我們將使用相應的scRNA-seq數據集來對scATAC-seq數據的細胞類群進行注釋。我們可以通過(https://www.dropbox.com/s/3f3p5nxrn5b3y4y/pbmc_10k_v3.rds?dl=1)地址下載所需的10X PBMC scRNA-seq(pbmc_10k_v3.rds)的Seurat對象。
> library(Seurat);
> pbmc.rna = readRDS("pbmc_10k_v3.rds");
> pbmc.rna$tech = "rna";
> variable.genes = VariableFeatures(object = pbmc.rna);
> genes.df = read.table("gencode.v19.annotation.gene.bed");
> genes.gr = GRanges(genes.df[,1], IRanges(genes.df[,2], genes.df[,3]), name=genes.df[,4]);
> genes.sel.gr = genes.gr[which(genes.gr$name %in% variable.genes)];
## reload the bmat, this is optional but highly recommanded
> x.sp = addBmatToSnap(x.sp);
> x.sp = createGmatFromMat(
obj=x.sp,
input.mat="bmat",
genes=genes.sel.gr,
do.par=TRUE,
num.cores=10
);
接下來,我們將snap對象轉換為Seurat對象,用于后續的數據整合。
# 使用snapToSeurat函數將snap對象轉換為Seurat對象
> pbmc.atac <- snapToSeurat(
obj=x.sp,
eigs.dims=1:20,
norm=TRUE,
scale=TRUE
);
# 識別整合的Anchors信息
> transfer.anchors <- FindTransferAnchors(
reference = pbmc.rna,
query = pbmc.atac,
features = variable.genes,
reference.assay = "RNA",
query.assay = "ACTIVITY",
reduction = "cca"
);
# 使用TransferData函數進行數據映射整合
> celltype.predictions <- TransferData(
anchorset = transfer.anchors,
refdata = pbmc.rna$celltype,
weight.reduction = pbmc.atac[["SnapATAC"]],
dims = 1:20
);
> x.sp@metaData$predicted.id = celltype.predictions$predicted.id;
> x.sp@metaData$predict.max.score = apply(celltype.predictions[,-1], 1, max);
> x.sp@cluster = as.factor(x.sp@metaData$predicted.id);
Step 10. Create psudo multiomics cells
現在,snap對象x.sp中包含了的每個細胞的染色質可及性@bmat和基因表達@gmat的信息。
> refdata <- GetAssayData(
object = pbmc.rna,
assay = "RNA",
slot = "data"
);
> imputation <- TransferData(
anchorset = transfer.anchors,
refdata = refdata,
weight.reduction = pbmc.atac[["SnapATAC"]],
dims = 1:20
);
> x.sp@gmat = t(imputation@data);
> rm(imputation); # free memory
> rm(refdata); # free memory
> rm(pbmc.rna); # free memory
> rm(pbmc.atac); # free memory
Step 11. Remove cells of low prediction score
> hist(
x.sp@metaData$predict.max.score,
xlab="prediction score",
col="lightblue",
xlim=c(0, 1),
main="PBMC 10X"
);
> abline(v=0.5, col="red", lwd=2, lty=2);
> table(x.sp@metaData$predict.max.score > 0.5);
## FALSE TRUE
## 331 13103
> x.sp = x.sp[x.sp@metaData$predict.max.score > 0.5,];
> x.sp
## number of barcodes: 13045
## number of bins: 627478
## number of genes: 19089
## number of peaks: 0
> plotViz(
obj=x.sp,
method="umap",
main="PBMC 10X",
point.color=x.sp@metaData[,"predicted.id"],
point.size=0.5,
point.shape=19,
text.add=TRUE,
text.size=1,
text.color="black",
down.sample=10000,
legend.add=FALSE
);
Step 12. Gene expression projected onto UMAP
接下來,我們使用UMAP方法對一些marker基因的表達水平進行可視化展示。
> marker.genes = c(
"IL32", "LTB", "CD3D",
"IL7R", "LDHB", "FCGR3A",
"CD68", "MS4A1", "GNLY",
"CD3E", "CD14", "CD14",
"FCGR3A", "LYZ", "PPBP",
"CD8A", "PPBP", "CST3",
"NKG7", "MS4A7", "MS4A1",
"CD8A"
);
> par(mfrow = c(3, 3));
> for(i in 1:9){
j = which(colnames(x.sp@gmat) == marker.genes[i])
plotFeatureSingle(
obj=x.sp,
feature.value=x.sp@gmat[,j],
method="umap",
main=marker.genes[i],
point.size=0.1,
point.shape=19,
down.sample=10000,
quantiles=c(0.01, 0.99)
)};
Step 13. Identify peaks
接下來,我們將每個cluster群中的reads進行聚合,創建用于peak calling和可視化的集成track。執行完peak calling后,將生成一個.narrowPeak的文件,該文件中包含了識別出的peaks信息,和一個.bedgraph的文件,可以用于可視化展示。為了獲得最robust的結果,我們不建議對細胞數目小于100的cluster群執行此步驟。
> system("which snaptools");
/home/r3fang/anaconda2/bin/snaptools
> system("which macs2");
/home/r3fang/anaconda2/bin/macs2
# 使用runMACS函數調用macs2進行peak calling
> peaks = runMACS(
obj=x.sp[which(x.sp@cluster=="CD4 Naive"),],
output.prefix="PBMC.CD4_Naive",
path.to.snaptools="/home/r3fang/anaconda2/bin/snaptools",
path.to.macs="/home/r3fang/anaconda2/bin/macs2",
gsize="hs", # mm, hs, etc
buffer.size=500,
num.cores=10,
macs.options="--nomodel --shift 100 --ext 200 --qval 5e-2 -B --SPMR",
tmp.folder=tempdir()
);
為了對所有的cluster群執行peak calling,我們提供了一個簡便的腳本來實現該步驟。
# call peaks for all cluster with more than 100 cells
# 選出那些細胞數目大于100的cluster群
> clusters.sel = names(table(x.sp@cluster))[which(table(x.sp@cluster) > 100)];
# 批量對不同的cluster進行peak calling
> peaks.ls = mclapply(seq(clusters.sel), function(i){
print(clusters.sel[i]);
peaks = runMACS(
obj=x.sp[which(x.sp@cluster==clusters.sel[i]),],
output.prefix=paste0("PBMC.", gsub(" ", "_", clusters.sel)[i]),
path.to.snaptools="/home/r3fang/anaconda2/bin/snaptools",
path.to.macs="/home/r3fang/anaconda2/bin/macs2",
gsize="hs", # mm, hs, etc
buffer.size=500,
num.cores=1,
macs.options="--nomodel --shift 100 --ext 200 --qval 5e-2 -B --SPMR",
tmp.folder=tempdir()
);
peaks
}, mc.cores=5);
> peaks.names = system("ls | grep narrowPeak", intern=TRUE);
> peak.gr.ls = lapply(peaks.names, function(x){
peak.df = read.table(x)
GRanges(peak.df[,1], IRanges(peak.df[,2], peak.df[,3]))
})
# 合并peak信息
> peak.gr = reduce(Reduce(c, peak.gr.ls));
我們可以將每個cluster群生成的bdg文件導入到IGV或其他基因組瀏覽器(如UW genome browser)進行可視化的展示,下面是來自UW genome browser的FOXJ2基因及其側翼區域的screenshot。
Step 14. Create a cell-by-peak matrix
接下來,我們使用合并后的peaks作為參考,來創建一個cell-by-peak計數矩陣,并將其添加到snap對象中。
首先,我們將合并后的peaks信息寫入到peaks.combined.bed文件中
> peaks.df = as.data.frame(peak.gr)[,1:3];
> write.table(peaks.df,file = "peaks.combined.bed",append=FALSE,
quote= FALSE,sep="\t", eol = "\n", na = "NA", dec = ".",
row.names = FALSE, col.names = FALSE, qmethod = c("escape", "double"),
fileEncoding = "")
接下來,我們創建一個cell-by-peak計數矩陣,并將其添加到snap對象中。這一步可能需要一段時間。
$ snaptools snap-add-pmat \
--snap-file atac_pbmc_10k_nextgem.snap \
--peak-file peaks.combined.bed &
$ snaptools snap-add-pmat \
--snap-file atac_pbmc_5k_nextgem.snap \
--peak-file peaks.combined.bed
然后,我們將計算好的cell-by-peak計數矩陣添加到已有的snap對象中。
> x.sp = addPmatToSnap(x.sp);
Step 15. Identify differentially accessible peaks
對于一組給定的細胞Ci,我們首先在diffusion component空間中尋找鄰近的細胞Cj (|Ci|=|Cj|)作為“background”細胞進行比較。如果Ci細胞的數目占總細胞數目的一半以上,則使用剩余的細胞作為local background。接下來,我們將Ci和Cj細胞進行聚合,來創建兩個raw-count向量,即Vci和Vcj。然后,我們使用R包edgeR (v3.18.1)的精確檢驗(exact test)來對Vci和Vcj進行差異分析,其中,對于小鼠設置BCV=0.1,而人類設置BCV= 0.4。最后,再使用Benjamini-Hochberg多重檢驗校正方法,來調整p-value值為錯誤發現率(FDR)值。對于FDR值小于0.05的peaks,被選為顯著的DARs。
我們發現這種方法也存在一定的局限性,特別是對于那些細胞數目較少的cluster群,統計的有效性可能不夠強大。對于那些未能識別出顯著差異peaks的cluster群,我們將根據富集p-value值對元素進行排序,并挑選出最具代表性的2,000個peaks進行后續的motif分析。
> DARs = findDAR(
obj=x.sp,
input.mat="pmat",
cluster.pos="CD14+ Monocytes",
cluster.neg.method="knn",
test.method="exactTest",
bcv=0.4, #0.4 for human, 0.1 for mouse
seed.use=10
);
> DARs$FDR = p.adjust(DARs$PValue, method="BH");
> idy = which(DARs$FDR < 5e-2 & DARs$logFC > 0);
> par(mfrow = c(1, 2));
> plot(DARs$logCPM, DARs$logFC,
pch=19, cex=0.1, col="grey",
ylab="logFC", xlab="logCPM",
main="CD14+ Monocytes"
);
> points(DARs$logCPM[idy],
DARs$logFC[idy],
pch=19,
cex=0.5,
col="red"
);
> abline(h = 0, lwd=1, lty=2);
> covs = Matrix::rowSums(x.sp@pmat);
> vals = Matrix::rowSums(x.sp@pmat[,idy]) / covs;
> vals.zscore = (vals - mean(vals)) / sd(vals);
> plotFeatureSingle(
obj=x.sp,
feature.value=vals.zscore,
method="umap",
main="CD14+ Monocytes",
point.size=0.1,
point.shape=19,
down.sample=5000,
quantiles=c(0.01, 0.99)
);
Step 16. Motif variability analysis
SnapATAC可以調用chromVAR(Schep et al)程序進行motif可變性分析。
# 加載所需的R包
> library(chromVAR);
> library(motifmatchr);
> library(SummarizedExperiment);
> library(BSgenome.Hsapiens.UCSC.hg19);
> x.sp = makeBinary(x.sp, "pmat");
# 使用runChromVAR函數調用ChromVAR進行motif可變性分析
> x.sp@mmat = runChromVAR(
obj=x.sp,
input.mat="pmat",
genome=BSgenome.Hsapiens.UCSC.hg19,
min.count=10,
species="Homo sapiens"
);
> x.sp;
## number of barcodes: 13103
## number of bins: 627478
## number of genes: 19089
## number of peaks: 157750
## number of motifs: 271
> motif_i = "MA0071.1_RORA";
> dat = data.frame(x=x.sp@metaData$predicted.id, y=x.sp@mmat[,motif_i]);
> p <- ggplot(dat, aes(x=x, y=y, fill=x)) +
theme_classic() +
geom_violin() +
xlab("cluster") +
ylab("motif enrichment") +
ggtitle("MA0071.1_RORA") +
theme(
plot.margin = margin(5,1,5,1, "cm"),
axis.text.x = element_text(angle = 90, hjust = 1),
axis.ticks.x=element_blank(),
legend.position = "none"
);
Step 17. De novo motif discovery
SnapATAC還可以調用homer用于對識別出的差異可及性區域(DARs)進行motif的識別和富集分析.
# 查看findMotifsGenome.pl程序安裝的路徑
> system("which findMotifsGenome.pl");
/projects/ps-renlab/r3fang/public_html/softwares/homer/bin/findMotifsGenome.pl
# 使用findDAR函數鑒定DAR區域
> DARs = findDAR(
obj=x.sp,
input.mat="pmat",
cluster.pos="Double negative T cell",
cluster.neg.method="knn",
test.method="exactTest",
bcv=0.4, #0.4 for human, 0.1 for mouse
seed.use=10
);
> DARs$FDR = p.adjust(DARs$PValue, method="BH");
> idy = which(DARs$FDR < 5e-2 & DARs$logFC > 0);
# 使用runHomer函數調用homer進行de novo motif discovery
> motifs = runHomer(
x.sp[,idy,"pmat"],
mat = "pmat",
path.to.homer = "/projects/ps-renlab/r3fang/public_html/softwares/homer/bin/findMotifsGenome.pl",
result.dir = "./homer/DoubleNegativeTcell",
num.cores=5,
genome = 'hg19',
motif.length = 10,
scan.size = 300,
optimize.count = 2,
background = 'automatic',
local.background = FALSE,
only.known = TRUE,
only.denovo = FALSE,
fdr.num = 5,
cache = 100,
overwrite = TRUE,
keep.minimal = FALSE
);
Step 18. Predict gene-enhancer pairs
最后,我們還可以使用一種“pseudo”細胞的方法,根據單個細胞中基因的表達和遠端調控元件的染色質可及性的關系,將遠端調控元件連接到目標基因上。對于給定的marker基因,我們首先識別出marker基因側翼區域內的peak。對于每個側翼的peak,我們使用基因表達作為輸入變量進行邏輯回歸來預測binarized的染色質狀態。產生的結果估計了染色質可及性與基因表達之間聯系的重要性。
> TSS.loci = GRanges("chr12", IRanges(8219067, 8219068));
> pairs = predictGenePeakPair(
x.sp,
input.mat="pmat",
gene.name="C3AR1",
gene.loci=resize(TSS.loci, width=500000, fix="center"),
do.par=FALSE
);
# convert the pair to genome browser arc plot format
> pairs.df = as.data.frame(pairs);
> pairs.df = data.frame(
chr1=pairs.df[,"seqnames"],
start1=pairs.df[,"start"],
end1=pairs.df[,"end"],
chr2="chr2",
start2=8219067,
end2=8219068,
Pval=pairs.df[,"logPval"]
);
> head(pairs.df)
## chr1 start1 end1 chr2 start2 end2 Pval
## 1 chr12 7984734 7985229 chr2 8219067 8219068 14.6075918
## 2 chr12 7987561 7988085 chr2 8219067 8219068 5.6718381
## 3 chr12 7989776 7990567 chr2 8219067 8219068 24.2564608
## 4 chr12 7996454 7996667 chr2 8219067 8219068 0.6411017
## 5 chr12 8000059 8000667 chr2 8219067 8219068 2.0324922
## 6 chr12 8012404 8013040 chr2 8219067 8219068 0.0000000
參考來源:https://gitee.com/booew/SnapATAC/blob/master/examples/10X_PBMC_15K/README.md