深度學習準備

import sys, os

import numpyas np

sys.path.append(os.pardir)

from dataset.mnistimport load_mnist

import matplotlib.pyplotas plt

from PILimport Image

import pickle

#圖片預覽

# def img_show(img):

#? ? pil_img = Image.fromarray(np.uint8(img)) #將numpy數組的圖像數據轉換為PIL的數據對象

#? ? pil_img.show()

# img = x_train[0]

# label = t_train[0]

# print(label)

# print(img.shape)

# img = img.reshape(28, 28)

# print(img.shape)

# img_show(img)

# def sigmoid(z):

#? ? return 1 / (1 + np.exp(-z))

def softmax(a):

c = np.max(a)

exp_a = np.exp(a-c)

exp_sum = np.sum(exp_a)

return exp_a / exp_sum

#數據準備

def get_data():

(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True,? flatten=True, one_hot_label=False)

return x_train, t_train

#

# def init_network():

#? ? with open('sample_weight.pkl', 'rb') as f : #讀取二進制文件,注意文件是否過大決定讀取方式,此處讀取不到該文件

#? ? ? ? network = pickle.load(f)

#? ? return network

# def predict(network, x):

#? ? W1, W2, W3 = network['W1'], network['W2'], network['W3']

#? ? b1, b2, b3 = network['b1'], network['b1'], network['b1']

#? ? z1 = np.dot(x, W1) + b1

#? ? a1 = sigmoid(z1)

#? ? z2 = np.dot(a1, W2) + b2

#? ? a2 = sigmoid(z2)

#? ? z3 = np.dot(a2, W3) + b3

#? ? y = softmax(z3)

#? ? return y

# x, t = get_data()

# network = init_network()

# accuracy_cnt = 0

# for i in range(len(x)):

#? ? y = predict(network, x)

#? ? p = np.argmax(y)

#? ? if p == t[i]:

#? ? ? ? accuracy_cnt += 1

# print('accuracy:'+ str(float(accuracy_cnt) / len(x)))

#批處理,加快運算速度

# x, t = get_data()

# network = init_network()

# batch_size = 100

# accuracy_cnt = 0

# for i in range(0, len(x), batch_size):

#? ? x_batch = x[i:i+batch_size]

#? ? y_batch = predict(network, x_batch)

#? ? p = np.argmax(y_batch, axis=1) #矩陣的第0維是列方向,第1維是行方向

#? ? accuracy_cnt += np.sum(p == t[i:i+batch_size])

# print('accuracy:'+ str(float(accuracy_cnt) / len(x)))

#第4章

#均方誤差

# def mean_squared_error(y, t):

#? ? return 0.5 * np.sum((y-t)**2)

# t = np.array([0, 0, 1, 0, 0, 0, 0, 0, 0, 0])

# y = np.array([0.1, 0.05, 0.6, 0.0, 0.05, 0.1, 0.0, 0.1, 0.0, 0.0])

# print(mean_squared_error(y, t))

#交叉熵誤差

# def cross_entropy_error(y, t):

#? ? delta = 1e-7

#? ? return -np.sum(t * np.log(y + delta))

# t = np.array([0, 0, 1, 0, 0, 0, 0, 0, 0, 0])

# y = np.array([0.1, 0.05, 0.6, 0.0, 0.05, 0.1, 0.0, 0.1, 0.0, 0.0])

# print(cross_entropy_error(y, t))

#隨機抽取

# x_train, t_train = get_data()

# train_size = x_train.shape[0]

# batch_size = 10

# batch_mask = np.random.choice(train_size, batch_size)

# x_batch = x_train[batch_mask]

# t_batch = t_train[batch_mask]

# print(batch_mask)

# print(x_train)

#交叉熵誤差,支持單個和批量數據

# def cross_entropy_error(y, t):

#? ? if y.ndim == 1:

#? ? ? ? t = t.reshape(1,t. size)

#? ? ? ? y = y.reshape(1, y.size)

#? ? batch_size = y.shape[0]

#? ? return -np.sum(t * np.log(y + 1e-7)) / batch_size

# #如果監督數據是標簽形式,計算交叉熵誤差

def cross_entrory_error(y, t):

if y.ndim ==1:

t = t.reshape(1, t.size)

y = y.reshape(1, y.size)

batch_size = y.shape[0]

return -np.sum(np.log(y[np.arange(batch_size), t] +1e-7)) / batch_size

#數值微分

def function_1(x):

return 0.01*x**2 +0.1*x

# # x = np.arange(0, 20, 0.1)

# # y = function_1(x)

# # plt.xlabel('x')

# # plt.ylabel('y')

# # plt.plot(x, y)

# # plt.show()

# def numerical_diff(f, x):

#? ? h = 1e-4

#? ? return (f(x+h) - f(x-h)) / (2*h)

# print(numerical_diff(function_1, 5))

#計算給定x的偏導數,例如(x1,x2,x3),會計算出三個偏導數

def numerical_gradient_nobatch(f, x):

h =1e-4

? ? grad = np.zeros_like(x)

for idxin range(x.size):

val = x[idx]

#f1(x)

? ? ? ? x[idx] = val + h

fxh1 = f(x)

#f2(x)

? ? ? ? x[idx] = val - h

fxh2 = f(x)

grad[idx] = (fxh1 - fxh2) / (2*h)

x[idx] = val

return grad

#包裝上述偏導計算函數,如果維度大于1維,通過enumerate每行取x for循環計算

def numerical_gradient(f, X):

if X.ndim ==1:

return numerical_gradient_nobatch(f, X)

else:

grad = np.zeros_like(X)

for idx, xin enumerate(X):

grad[idx] = numerical_gradient_nobatch(f, x)

return grad

def function_2(x):

return x[0]**2 + x[1]**2

#g = numerical_gradient(function_2, np.array([3.0, 4.0])) #沒有加小數點,導致結果差距很大

#使用梯度下降法求最小值

def gradient_decent(f, init_x, lr =0.01, step_num =100):

x = init_x

for iin range(step_num):

grad = numerical_gradient(f, x)

x -=lr * grad

return x

# init_x = np.array([-3.0, 4.0])

# g = gradient_decent(function_2, init_x, lr=0.1, step_num=100)

# print(g)

#神經網絡的類

class simpleNet:

def __init__(self):

self.W = np.random.randn(2,3)

def predict(self, x):

return np.dot(x, self.W)

def loss(self, x, t):

z =self.predict(x)

y = softmax(z)

loss = cross_entrory_error(y, t)

return loss

net = simpleNet()

print(net.W)

x = np.array([0.6, 0.9])

p = net.predict(x)

print(p)

print(np.argmax(p))

t = np.array([0, 0, 1])

print(net.loss(x, t))

#偏導計算函數的輸入變量,函數+自變量權重

f =lambda w : net.loss(x, t)

dW = numerical_gradient(f, net.W)

print(dW)

?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容