NBIS系列單細(xì)胞轉(zhuǎn)錄組數(shù)據(jù)分析實(shí)戰(zhàn)(四):細(xì)胞聚類分析

第四節(jié):細(xì)胞聚類分析

在本節(jié)教程中,我們將基于批次矯正后的整合數(shù)據(jù)集進(jìn)行細(xì)胞聚類分析,我們使用PCA線性降維的結(jié)果分別執(zhí)行k-最近鄰圖聚類,層次聚類和k-均值聚類。

加載所需的R包和數(shù)據(jù)集

if (!require(clustree)) {
    install.packages("clustree", dependencies = FALSE)
}
## Loading required package: clustree
## Loading required package: ggraph

suppressPackageStartupMessages({
    library(Seurat)
    library(cowplot)
    library(ggplot2)
    library(pheatmap)
    library(rafalib)
    library(clustree)
})

alldata <- readRDS("data/results/covid_qc_dr_int.rds")

執(zhí)行k-最近鄰圖聚類

在執(zhí)行圖聚類的過程中主要包括以下3個(gè)步驟:

  • Build a kNN graph from the data
  • Prune spurious connections from kNN graph (optional step). This is a SNN graph.
  • Find groups of cells that maximizes the connections within the group compared other groups.

構(gòu)建kNN/SNN圖

執(zhí)行圖聚類的第一步是構(gòu)建一個(gè)kNN圖,我們使用PCA降維的前N個(gè)PC用于計(jì)算。

我們可以使用Seurat包中的FindNeighbors函數(shù)計(jì)算構(gòu)建KNN和SNN圖。

# check that CCA is still the active assay
alldata@active.assay
## [1] "CCA"

# 使用FindNeighbors函數(shù)構(gòu)建SNN圖
alldata <- FindNeighbors(alldata, dims = 1:30, k.param = 60, prune.SNN = 1/15)
## Computing nearest neighbor graph
## Computing SNN

# check the names for graphs in the object.
names(alldata@graphs)
## [1] "CCA_nn"  "CCA_snn"

我們可以看一下kNN圖,它是一個(gè)連接矩陣,其中不同細(xì)胞之間的每個(gè)連接都表示為1個(gè)s,這稱之為未加權(quán)圖(Seurat中的默認(rèn)值)。但是,某些細(xì)胞之間的連接可能比其他細(xì)胞的更重要,在這種情況下,圖的尺度會(huì)從0到最大距離。通常,距離越小,兩點(diǎn)越接近,它們之間的連接也越牢固,這稱之為加權(quán)圖。加權(quán)圖和未加權(quán)圖均適用于圖聚類,但是對(duì)于大型數(shù)據(jù)集(>100k細(xì)胞),使用非加權(quán)圖在聚類上的速度會(huì)更快。

pheatmap(alldata@graphs$CCA_nn[1:200, 1:200], 
                 col = c("white", "black"), border_color = "grey90", 
                 legend = F, cluster_rows = F, cluster_cols = F, fontsize = 2)
image.png

基于SNN圖進(jìn)行細(xì)胞聚類

在構(gòu)建好SNN圖后,我們可以基于其執(zhí)行圖聚類。選用不同的分辨率(resolution)進(jìn)行細(xì)胞聚類,分辨率越大,聚類出來的細(xì)胞簇?cái)?shù)越多。

在Seurat中,我們使用FindClusters函數(shù)進(jìn)行細(xì)胞聚類,默認(rèn)情況下(algorithm = 1),該函數(shù)將使用“ Louvain”算法進(jìn)行基于圖的聚類。要使用leiden算法,我們需要將其設(shè)置為algorithm = 4

# Clustering with louvain (algorithm 1)
for (res in c(0.1, 0.25, 0.5, 1, 1.5, 2)) {
    alldata <- FindClusters(alldata, graph.name = "CCA_snn", resolution = res, algorithm = 1)
}

# each time you run clustering, the data is stored in meta data columns:
# seurat_clusters - lastest results only CCA_snn_res.XX - for each different
# resolution you test.

plot_grid(ncol = 3, DimPlot(alldata, reduction = "umap", group.by = "CCA_snn_res.0.5") + ggtitle("louvain_0.5"), 
                    DimPlot(alldata, reduction = "umap", group.by = "CCA_snn_res.1") + ggtitle("louvain_1"), 
                    DimPlot(alldata, reduction = "umap", group.by = "CCA_snn_res.2") + ggtitle("louvain_2"))
image.png

現(xiàn)在,我們可以使用clustree包來可視化不同分辨率下細(xì)胞在聚類群之間的分配。

# install.packages('clustree')
suppressPackageStartupMessages(library(clustree))

clustree(alldata@meta.data, prefix = "CCA_snn_res.")
image.png

K均值聚類

K-means是一種常用的聚類算法,已在許多應(yīng)用領(lǐng)域中使用。在R中,可以通過kmeans函數(shù)進(jìn)行調(diào)用。通常,它應(yīng)用于表達(dá)數(shù)據(jù)的降維表示(由于低維距離的可解釋性,因此通常用于PCA)。

我們需要預(yù)先設(shè)定聚類群的數(shù)量。由于聚類的結(jié)果取決于群集中心的初始化,因此通常建議使用多個(gè)啟動(dòng)配置(通過nstart參數(shù))運(yùn)行K-means。

for (k in c(5, 7, 10, 12, 15, 17, 20)) {
    alldata@meta.data[, paste0("kmeans_", k)] <- kmeans(x = alldata@reductions[["pca"]]@cell.embeddings,  centers = k, nstart = 100)$cluster
}

plot_grid(ncol = 3, DimPlot(alldata, reduction = "umap", group.by = "kmeans_5") +  ggtitle("kmeans_5"), 
                    DimPlot(alldata, reduction = "umap", group.by = "kmeans_10") +  ggtitle("kmeans_10"), 
                    DimPlot(alldata, reduction = "umap", group.by = "kmeans_15") +  ggtitle("kmeans_15"))
image.png

使用clustree函數(shù)查看不同聚類群的結(jié)果

clustree(alldata@meta.data, prefix = "kmeans_")
image.png

層次聚類

定義細(xì)胞之間的距離

基本的Rstats包中包含一個(gè)dist函數(shù),可以用于計(jì)算所有成對(duì)樣本之間的距離。由于我們要計(jì)算樣本之間的距離,而不是基因之間的距離,因此我們需要先對(duì)表達(dá)數(shù)據(jù)進(jìn)行轉(zhuǎn)置,然后再將其應(yīng)用于dist函數(shù)中。dist函數(shù)中可用的距離計(jì)算方法有:“euclidean”, “maximum”, “manhattan”, “canberra”, “binary” or “minkowski”.

d <- dist(alldata@reductions[["pca"]]@cell.embeddings, method = "euclidean")

可以看到,dist函數(shù)不能實(shí)現(xiàn)correlation的方法。但是,我們可以創(chuàng)建自己的距離并將其轉(zhuǎn)換為距離對(duì)象。我們首先可以使用cor函數(shù)計(jì)算樣本之間的相關(guān)性。如您所知,相關(guān)性的范圍是從-1到1的,其中1表示兩個(gè)樣本最接近,-1表示兩個(gè)樣本最遠(yuǎn),0介于兩者之間。但是,這在定義距離時(shí)會(huì)產(chǎn)生問題,因?yàn)榫嚯x0表示兩個(gè)樣本最接近,距離1表示兩個(gè)樣本最遠(yuǎn),而距離-1沒有意義。因此,我們需要將相關(guān)性轉(zhuǎn)換為正尺度(又稱adjacency):

image.png

將相關(guān)性轉(zhuǎn)換為0-1比例后,我們可以簡(jiǎn)單地使用as.dist函數(shù)將其轉(zhuǎn)換為距離對(duì)象。

# Compute sample correlations
# 計(jì)算細(xì)胞之間的相關(guān)性
sample_cor <- cor(Matrix::t(alldata@reductions[["pca"]]@cell.embeddings))

# Transform the scale from correlations
sample_cor <- (1 - sample_cor)/2

# Convert it to a distance object
d2 <- as.dist(sample_cor)

基于細(xì)胞之間的距離進(jìn)行層次聚類

在計(jì)算出所有樣本之間的距離之后,我們可以對(duì)其進(jìn)行層次聚類。我們將使用hclust函數(shù)實(shí)現(xiàn)該功能,在該函數(shù)中,我們可以簡(jiǎn)單地使用上面創(chuàng)建的距離對(duì)象來運(yùn)行它。可用的方法有:“ward.D”, “ward.D2”, “single”, “complete”, “average”, “mcquitty”, “median” or “centroid”。

# euclidean
h_euclidean <- hclust(d, method = "ward.D2")

# correlation
h_correlation <- hclust(d2, method = "ward.D2")

創(chuàng)建好分層聚類樹后,下一步就是定義哪些樣本屬于特定簇。我們可以使用cutree函數(shù)根據(jù)特定k值切割聚類樹,以定義聚類群。我們還可以定義簇的數(shù)量或確定高度。

#euclidean distance
alldata$hc_euclidean_5 <- cutree(h_euclidean,k = 5)
alldata$hc_euclidean_10 <- cutree(h_euclidean,k = 10)
alldata$hc_euclidean_15 <- cutree(h_euclidean,k = 15)

#correlation distance
alldata$hc_corelation_5 <- cutree(h_correlation,k = 5)
alldata$hc_corelation_10 <- cutree(h_correlation,k = 10)
alldata$hc_corelation_15 <- cutree(h_correlation,k = 15)

plot_grid(ncol = 3,
  DimPlot(alldata, reduction = "umap", group.by = "hc_euclidean_5")+ggtitle("hc_euc_5"),
  DimPlot(alldata, reduction = "umap", group.by = "hc_euclidean_10")+ggtitle("hc_euc_10"),
  DimPlot(alldata, reduction = "umap", group.by = "hc_euclidean_15")+ggtitle("hc_euc_15"),

  DimPlot(alldata, reduction = "umap", group.by = "hc_corelation_5")+ggtitle("hc_cor_5"),
  DimPlot(alldata, reduction = "umap", group.by = "hc_corelation_10")+ggtitle("hc_cor_10"),
  DimPlot(alldata, reduction = "umap", group.by = "hc_corelation_15")+ggtitle("hc_cor_15")
)
image.png

保存細(xì)胞聚類的結(jié)果

saveRDS(alldata, "data/results/covid_qc_dr_int_cl.rds")
sessionInfo()
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: macOS Catalina 10.15.5
## 
## Matrix products: default
## BLAS/LAPACK: /Users/paulo.czarnewski/.conda/envs/scRNAseq2021/lib/libopenblasp-r0.3.12.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
##  [1] parallel  stats4    grid      stats     graphics  grDevices utils    
##  [8] datasets  methods   base     
## 
## other attached packages:
##  [1] rafalib_1.0.0               pheatmap_1.0.12            
##  [3] clustree_0.4.3              ggraph_2.0.4               
##  [5] reticulate_1.18             harmony_1.0                
##  [7] Rcpp_1.0.6                  scran_1.18.0               
##  [9] SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0
## [11] Biobase_2.50.0              GenomicRanges_1.42.0       
## [13] GenomeInfoDb_1.26.0         IRanges_2.24.0             
## [15] S4Vectors_0.28.0            BiocGenerics_0.36.0        
## [17] MatrixGenerics_1.2.0        matrixStats_0.57.0         
## [19] ggplot2_3.3.3               cowplot_1.1.1              
## [21] KernSmooth_2.23-18          fields_11.6                
## [23] spam_2.6-0                  dotCall64_1.0-0            
## [25] DoubletFinder_2.0.3         Matrix_1.3-2               
## [27] Seurat_3.2.3                RJSONIO_1.3-1.4            
## [29] optparse_1.6.6             
## 
## loaded via a namespace (and not attached):
##   [1] tidyselect_1.1.0          htmlwidgets_1.5.3        
##   [3] BiocParallel_1.24.0       Rtsne_0.15               
##   [5] munsell_0.5.0             codetools_0.2-18         
##   [7] ica_1.0-2                 statmod_1.4.35           
##   [9] future_1.21.0             miniUI_0.1.1.1           
##  [11] withr_2.4.0               colorspace_2.0-0         
##  [13] knitr_1.30                ROCR_1.0-11              
##  [15] tensor_1.5                listenv_0.8.0            
##  [17] labeling_0.4.2            GenomeInfoDbData_1.2.4   
##  [19] polyclip_1.10-0           bit64_4.0.5              
##  [21] farver_2.0.3              parallelly_1.23.0        
##  [23] vctrs_0.3.6               generics_0.1.0           
##  [25] xfun_0.20                 R6_2.5.0                 
##  [27] graphlayouts_0.7.1        rsvd_1.0.3               
##  [29] locfit_1.5-9.4            hdf5r_1.3.3              
##  [31] bitops_1.0-6              spatstat.utils_1.20-2    
##  [33] DelayedArray_0.16.0       assertthat_0.2.1         
##  [35] promises_1.1.1            scales_1.1.1             
##  [37] gtable_0.3.0              beachmat_2.6.0           
##  [39] globals_0.14.0            goftest_1.2-2            
##  [41] tidygraph_1.2.0           rlang_0.4.10             
##  [43] splines_4.0.3             lazyeval_0.2.2           
##  [45] checkmate_2.0.0           yaml_2.2.1               
##  [47] reshape2_1.4.4            abind_1.4-5              
##  [49] backports_1.2.1           httpuv_1.5.5             
##  [51] tools_4.0.3               ellipsis_0.3.1           
##  [53] RColorBrewer_1.1-2        ggridges_0.5.3           
##  [55] plyr_1.8.6                sparseMatrixStats_1.2.0  
##  [57] zlibbioc_1.36.0           purrr_0.3.4              
##  [59] RCurl_1.98-1.2            rpart_4.1-15             
##  [61] deldir_0.2-9              pbapply_1.4-3            
##  [63] viridis_0.5.1             zoo_1.8-8                
##  [65] ggrepel_0.9.1             cluster_2.1.0            
##  [67] magrittr_2.0.1            data.table_1.13.6        
##  [69] RSpectra_0.16-0           scattermore_0.7          
##  [71] lmtest_0.9-38             RANN_2.6.1               
##  [73] fitdistrplus_1.1-3        patchwork_1.1.1          
##  [75] mime_0.9                  evaluate_0.14            
##  [77] xtable_1.8-4              gridExtra_2.3            
##  [79] compiler_4.0.3            tibble_3.0.5             
##  [81] maps_3.3.0                crayon_1.3.4             
##  [83] htmltools_0.5.1           mgcv_1.8-33              
##  [85] venn_1.9                  later_1.1.0.1            
##  [87] tidyr_1.1.2               DBI_1.1.1                
##  [89] tweenr_1.0.1              formatR_1.7              
##  [91] MASS_7.3-53               getopt_1.20.3            
##  [93] igraph_1.2.6              pkgconfig_2.0.3          
##  [95] plotly_4.9.3              scuttle_1.0.0            
##  [97] admisc_0.11               dqrng_0.2.1              
##  [99] XVector_0.30.0            stringr_1.4.0            
## [101] digest_0.6.27             sctransform_0.3.2        
## [103] RcppAnnoy_0.0.18          spatstat.data_1.7-0      
## [105] rmarkdown_2.6             leiden_0.3.6             
## [107] uwot_0.1.10               edgeR_3.32.0             
## [109] DelayedMatrixStats_1.12.0 curl_4.3                 
## [111] shiny_1.5.0               lifecycle_0.2.0          
## [113] nlme_3.1-151              jsonlite_1.7.2           
## [115] BiocNeighbors_1.8.0       viridisLite_0.3.0        
## [117] limma_3.46.0              pillar_1.4.7             
## [119] lattice_0.20-41           fastmap_1.0.1            
## [121] httr_1.4.2                survival_3.2-7           
## [123] glue_1.4.2                remotes_2.2.0            
## [125] spatstat_1.64-1           png_0.1-7                
## [127] bluster_1.0.0             bit_4.0.4                
## [129] ggforce_0.3.2             stringi_1.5.3            
## [131] BiocSingular_1.6.0        dplyr_1.0.3              
## [133] irlba_2.3.3               future.apply_1.7.0

參考來源:https://nbisweden.github.io/workshop-scRNAseq/labs/compiled/seurat/seurat_04_clustering.html

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。

推薦閱讀更多精彩內(nèi)容