Job任務提交到執行源碼分析(一)

以官方Hadoop中的 WordCount案例分析 ,Job作業的提交過程:

public static void main(String[] args) throws Exception {
          // Create a new Job
          Configuration conf=new Configuration(true);
          Job job = Job.getInstance(conf);
          job.setJarByClass(MyWorkCountJob.class);
         // Specify various job-specific parameters    
          job.setJobName("myWorkCountjob");
          //設置輸入文件路徑
          FileInputFormat.addInputPath(job, new Path("/user/root/hello.txt"));
          //設置輸出文件路徑
          Path outPath=new Path("/sxt/mr/output");
          if(FileSystem.get(conf).exists(outPath))
           FileSystem.get(conf).delete(outPath);
          FileOutputFormat.setOutputPath(job, outPath);
         job.setMapperClass(MyMapper.class);
          
          job.setReducerClass(MyReducer.class);
          job.setOutputKeyClass(Text.class);
          job.setOutputValueClass(IntWritable.class);
          // Submit the job, then poll for progress until the job is complete
          job.waitForCompletion(true);//job 提交的入口
     }

waitForCompletion方法

public boolean waitForCompletion(boolean verbose
                                   ) throws IOException, InterruptedException,
                                            ClassNotFoundException {
    if (state == JobState.DEFINE) {
      submit();// 任務提交1.1
    }
    if (verbose) {
      monitorAndPrintJob();//實時監控Job任務并打印相關的日志
    } else {
      // get the completion poll interval from the client.
      int completionPollIntervalMillis =
        Job.getCompletionPollInterval(cluster.getConf());
      while (!isComplete()) {
        try {
          Thread.sleep(completionPollIntervalMillis);
        } catch (InterruptedException ie) {
        }
      }
    }
    return isSuccessful();
  }

1.1 submit 方法

public void submit()
         throws IOException, InterruptedException, ClassNotFoundException {
    ensureState(JobState.DEFINE);//確定job狀態
    setUseNewAPI();//默認使用新的API
    connect();//獲得與集群的連接
    final JobSubmitter submitter =
        getJobSubmitter(cluster.getFileSystem(), cluster.getClient());
    status = ugi.doAs(new PrivilegedExceptionAction<JobStatus>() {
      public JobStatus run() throws IOException, InterruptedException,
      ClassNotFoundException {
            //異步調用submitJobInternal方法提交任務 1.2
        return submitter.submitJobInternal(Job.this, cluster);
      }
    });
    state = JobState.RUNNING;
    LOG.info("The url to track the job: " + getTrackingURL());
   }

submit方法首先創建了JobSubmitter實例,然后異步調用了JobSubmitter的submitJobInternal方法

1.2 submitJobInternal 方法

JobStatus submitJobInternal(Job job, Cluster cluster)
  throws ClassNotFoundException, InterruptedException, IOException {

    //檢查job的輸出路徑是否存在,如果存在則拋出異常
    checkSpecs(job);
    Configuration conf = job.getConfiguration();
    addMRFrameworkToDistributedCache(conf);

      //初始化臨時目錄和返回的輸出路徑。
    Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);
    //configure the command line options correctly on the submitting dfs
    InetAddress ip = InetAddress.getLocalHost();
    if (ip != null) {
      submitHostAddress = ip.getHostAddress();
      submitHostName = ip.getHostName();
      conf.set(MRJobConfig.JOB_SUBMITHOST,submitHostName);
      conf.set(MRJobConfig.JOB_SUBMITHOSTADDR,submitHostAddress);
    }
      //獲取新的JobId 
    JobID jobId = submitClient.getNewJobID();
    job.setJobID(jobId);
      // 獲取提交目錄
    Path submitJobDir = new Path(jobStagingArea, jobId.toString());
    ......
        //把作業上傳到集群中去
      copyAndConfigureFiles(job, submitJobDir);

      Path submitJobFile = JobSubmissionFiles.getJobConfPath(submitJobDir);
     
      // 創建切片列表 找出每個文件的切片列表 合并切片列表的數量就是Map任務個數  客戶端統計
      int maps = writeSplits(job, submitJobDir); //2.1核心方法
      conf.setInt(MRJobConfig.NUM_MAPS, maps);//文件分片的大小 就是Map任務數量
      ......

      // Write job file to submit dir    相關配置寫入到job.xml中
      writeConf(conf, submitJobFile);
     
      // Now, actually submit the job (using the submit name) 真正的提交作業
      status = submitClient.submitJob( //2.3 提交job到RecourceManager
          jobId, submitJobDir.toString(), job.getCredentials());
     ...
  }

2.1 文件切片操作 writeSplits -> writeNewSplits 計算向數據移動模型的核心

private <T extends InputSplit>
  int writeNewSplits(JobContext job, Path jobSubmitDir) throws IOException,
      InterruptedException, ClassNotFoundException {
    Configuration conf = job.getConfiguration();
    InputFormat<?, ?> input =
      ReflectionUtils.newInstance(job.getInputFormatClass(), conf);

    List<InputSplit> splits = input.getSplits(job);
    T[] array = (T[]) splits.toArray(new InputSplit[splits.size()]);

    // sort the splits into order based on size, so that the biggest
    // go first
    Arrays.sort(array, new SplitComparator());
      //將split信息和SplitMetaInfo都寫入HDFS中
    JobSplitWriter.createSplitFiles(jobSubmitDir, conf,
        jobSubmitDir.getFileSystem(conf), array);
    return array.length;
  }

writeNewSplits方法中,劃分任務數量最關鍵的代碼即為InputFormat的getSplits方法(InputFormat有不同實現類 框架默認的是TextInputFormat)。此時的Input即為TextInputFormat的父類FileInputFormat,其getSplits方法的實現如下:

 public List<InputSplit> getSplits(JobContext job) throws IOException {
    Stopwatch sw = new Stopwatch().start();
    long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));//默認最小值 1
    long maxSize = getMaxSplitSize(job);//默認最大值 Long類型的最大值

    // generate splits
    List<InputSplit> splits = new ArrayList<InputSplit>();
    List<FileStatus> files = listStatus(job);//獲取源文件的源信息列表
    for (FileStatus file: files) {
      Path path = file.getPath();
      long length = file.getLen();
      if (length != 0) {
        BlockLocation[] blkLocations;
            //獲取文件的block塊列表
        if (file instanceof LocatedFileStatus) {
          blkLocations = ((LocatedFileStatus) file).getBlockLocations();
        } else {
          FileSystem fs = path.getFileSystem(job.getConfiguration());
          blkLocations = fs.getFileBlockLocations(file, 0, length);
        }
        if (isSplitable(job, path))
          long blockSize = file.getBlockSize();
          long splitSize = computeSplitSize(blockSize, minSize, maxSize);
        //核心代碼塊
          long bytesRemaining = length;
          while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
            int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
            splits.add(makeSplit(path, length-bytesRemaining, splitSize,
                        blkLocations[blkIndex].getHosts(),
                        blkLocations[blkIndex].getCachedHosts()));
            bytesRemaining -= splitSize;
          }
//核心代碼塊結束
          if (bytesRemaining != 0) { 
            int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
            splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining,
                       blkLocations[blkIndex].getHosts(),
                       blkLocations[blkIndex].getCachedHosts()));
          }
        } else { // not splitable
          splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts(),
                      blkLocations[0].getCachedHosts()));
        }
      } else {
        //Create empty hosts array for zero length files
        splits.add(makeSplit(path, 0, length, new String[0]));
      }
    }
    // Save the number of input files for metrics/loadgen
    job.getConfiguration().setLong(NUM_INPUT_FILES, files.size());
    sw.stop();
    if (LOG.isDebugEnabled()) {
      LOG.debug("Total # of splits generated by getSplits: " + splits.size()
          + ", TimeTaken: " + sw.elapsedMillis());
    }
    return splits;
  }

2.2 核心代碼塊分析
對每個輸入文件進行split劃分。注意這只是個邏輯的劃分 因此執行的是FileInputFormat類中的getSplits方法。只有非壓縮的文件和幾種特定壓縮方式壓縮后的文件才分片。分片的大小由如下幾個參數決定:mapreduce.input.fileinputformat.split.maxsize、mapreduce.input.fileinputformat.split.minsize、文件的blocksize大小確定。
具體計算方式為:
Math.max(minSize, Math.min(maxSize, blockSize))
分片的大小有可能比默認塊大小64M要大,當然也有可能小于它,默認情況下分片大小為當前HDFS的塊大小,64M

第一步 將bytesRemaining(剩余未分片字節數)初始化設置為整個文件的長度
第二步 如果bytesRemaining超過分片大小splitSize一定量才會將文件分成多個InputSplit,SPLIT_SLOP(默認1.1)。接著就會執行如下方法獲取block的索引,其中第二個參數是這個block在整個文件中的偏移量

protected int getBlockIndex(BlockLocation[] blkLocations,
                              long offset) {
    for (int i = 0 ; i < blkLocations.length; i++) {
      // is the offset inside this block? 核心代碼塊 判斷當前的偏移量是否在某個block中 是就返回當前index 位置信息
      if ((blkLocations[i].getOffset() <= offset) &&
          (offset < blkLocations[i].getOffset() + blkLocations[i].getLength())){
        return i;
      }
    }
    BlockLocation last = blkLocations[blkLocations.length -1];
    long fileLength = last.getOffset() + last.getLength() -1;
    throw new IllegalArgumentException("Offset " + offset +
                                       " is outside of file (0.." +
                                       fileLength + ")");
  }

第三步 將符合條件的塊的索引對應的block信息的主機節點以及文件的路徑名、開始的偏移量、分片大小splitSize封裝到一個InputSplit中加入List<InputSplit> splits 列表。

第四步 bytesRemaining -= splitSize修改剩余字節大小 循環以上操作 直到不滿足條件 剩余bytesRemaining還不為0,表示還有未分配的數據,將剩余的數據及最后一個block加入splits列表

以上是 整個getSplits獲取切片的過程。當使用基于FileInputFormat實現InputFormat時,為了提高MapTask的數據本地化,應盡量使InputSplit大小與block大小相同

2.3 submitter 實現了ClientProtocol接口的類 在1.1中connect()連接集群時 調用init初始化方法 由框架讀取 HDFS的配置文件中配置了mapreduce.framework.name屬性為“yarn”的話,會創建一個YARNRunner對象 submitter 就是YARNRunner 對象
submitter.submitJobInternal(Job.this, cluster)

YARNRunner的構造方法:

public YARNRunner(Configuration conf, ResourceMgrDelegate resMgrDelegate,
     ClientCache clientCache) {
   this.conf = conf;
   try {
     this.resMgrDelegate = resMgrDelegate;
     this.clientCache = clientCache;
     this.defaultFileContext = FileContext.getFileContext(this.conf);
   } catch (UnsupportedFileSystemException ufe) {
     throw new RuntimeException("Error in instantiating YarnClient", ufe);
   }
 }

ResourceMgrDelegate實際上ResourceManager的代理類,其實現了YarnClient接口,通過ApplicationClientProtocol代理直接向RM提交Job,殺死Job,查詢Job運行狀態等操作。
YarnRunner 類的submitJob方法

public JobStatus submitJob(JobID jobId, String jobSubmitDir, Credentials ts)
  throws IOException, InterruptedException {
    addHistoryToken(ts);
    // Construct necessary information to start the MR AM
       //Client構造ASC。ASC中包括了調度隊列,優先級,用戶認證信息,除了這些基本的信息之外,還包括用來啟動AM的CLC信息,一個CLC中包括jar包、依賴文件、安全token,以及運行任務過程中需要的其他文件
    ApplicationSubmissionContext appContext =
      createApplicationSubmissionContext(conf, jobSubmitDir, ts);
    // Submit to ResourceManager
    try {
      ApplicationId applicationId =
          resMgrDelegate.submitApplication(appContext); // 2.4 提交ASC到RecoureManeger 

      ApplicationReport appMaster = resMgrDelegate
          .getApplicationReport(applicationId);
      String diagnostics =
          (appMaster == null ?
              "application report is null" : appMaster.getDiagnostics());
      if (appMaster == null
          || appMaster.getYarnApplicationState() == YarnApplicationState.FAILED
          || appMaster.getYarnApplicationState() == YarnApplicationState.KILLED) {
        throw new IOException("Failed to run job : " +
            diagnostics);
      }
      return clientCache.getClient(jobId).getJobStatus(jobId);
    } catch (YarnException e) {
      throw new IOException(e);
    }
  }

2.4 到這里一個Client就完成了一次Job任務的提交

2.5 YARN 框架 統一的資源管理 任務調度

yarn.png

相關的角色
**ResourceManager **
集群節點資源的統一管理

**NodeManager ** 每個DN上都會對應一個NM進程

  • 與RM匯報資源的使用情況
  • 管理運行的Container生命周期
    Container:【節點NM上CPU,MEM,I/O大小等資源的虛擬描述】

MR-ApplicationMaster-Container
每個Job作業對應一個AM,避免單點故障,負載到不同的節點
創建Task時需要和RM申請資源(Container),然后向存放具體資源的DN通信,由DN創建Container并且啟動進程同時下發任務(這里就實現了計算向數據移動

Task-Container 任務執行進程
DN上執行的JVM進程,接收到AM下發的任務后,通過反射機制創建具體的任務對象后 執行具體的任務

** 執行流程**
1 RM 在空閑的DN 上啟動AM
2 AM向RM申請資源 ,RM將資源分配信息給AM
3 AM在和數據所在的NM節點通信,創建Container并且通知NM啟動Container(JVM進程),分發具體任務到NM上,Container通過反射調起具體的任務類執行
4 如果是MapReduce框架 則進入到MapTask流程 具體分析見 http://liujiacai.net/blog/2014/09/07/yarn-intro/

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容