GG695 Posterior Assignment 6


title: "R Notebook"
output: html_notebook


Exercise 6.01

Beta distribution.

The shape parameter a increases fromleft to right across the columns,while the shape parameter b increases from top to bottom across the rows.

Exercise 6.02

(a) Map coordinates are interval-scale metric data.
(b) Distance are ratio-scale metric data.
(c) Temperatures are interval-scale metric data.
(d) Sorry, I don't understand the question. What is the meaning of start with eff and ell? Does it mean that like "effect" or something?
I think the categorical variables are factors in R, and their possible values are levels. But they are not start with eff and ell.
(e) exp(), log()

Exercise 6.1


source("C:/Users/User/Documents/DBDA2E-utilities.R")
source("C:/Users/User/Documents/BernBeta.R")
post=BernBeta(c(4,4), c(1)) #Exercise 6.1(a),the posterior is dbeta(theta|5,4)
post=BernBeta(post,c(1)) #Exercise 6.1(b),the prior is dbeta(theta|5,4), the posterior is dbeta(theta|6,4)
post=BernBeta(post,c(0)) #Exercise 6.1(c),the prior is dbeta(theta|6,4), the posterior is dbeta(theta|6,5)
post=BernBeta(c(4,4), c(0,1,1)) #Exercise 6.1(d), the prior is dbeta(theta|4,4), the posterior is dbeta(theta|6,5). Thus, they have the same posterior.
dev.off()

#Plot the priors and posteriors
x= seq(0.001,0.999,by=0.001) #Points for plotting
curve(dbeta(x,4,4),col='blue',ylim=c(0,3),xlab=bquote(theta),ylab="Distribution") #prior dbeta(theta|4,4)
curve(dbeta(x,5,4),col='red',add=T) #prior or posterior dbeta(theta|5,4)
curve(dbeta(x,6,4),col='green',add=T) #prior or posterior dbeat(theta|6,4)
curve(dbeta(x,6,5),col='black',add=T) #posterior dbeat(theta|6,5)
legend("topleft",legend=c("dbeta(theta|4,4)","dbeta(theta|5,4)","dbeta(theta|6,4)","dbeta(theta|6,5)"), lty=c(1,1),col=c("blue","red","green","black") )  

Exercise 6.2

source("C:/Users/User/Documents/DBDA2E-utilities.R")
source("C:/Users/User/Documents/BernBeta.R")
N=100 #the total sample size
sampleA=58 #the sample size of choosing A
#Assume perfer A=1, perfer B=0
CanA=rep(1,times=sampleA)#The choice set of candidate A
CanB=rep(0,times=(N-sampleA))#The choice set of candidate B
post=BernBeta(priorBetaAB = c(1,1),Data=c(CanA,CanB),showHDI = T,HDImass=0.95, showCentTend = "Mean") #Exercise 6.1(a),95% BCI (0.483,0.673)

N=100 #the total sample size
sampleA=57 #the sample size of choosing A
CanA=rep(1,times=sampleA)#The choice set of candidate A
CanB=rep(0,times=(N-sampleA))#The choice set of candidate B
post=BernBeta(post,Data=c(CanA,CanB),showHDI = T,HDImass=0.95, showCentTend = "Mode") #Exercise 6.1(b),95% BCI (0.506,0.642)

Exercise 6.4

source("C:/Users/User/Documents/DBDA2E-utilities.R")
source("C:/Users/User/Documents/BernBeta.R")

post=BernBeta(priorBetaAB = c(0.1,0.1), Data=c(rep(1,times=4),0),showHDI=T,showCentTend = "Mode")

Exercise 6.5

source("C:/Users/User/Documents/DBDA2E-utilities.R")
source("C:/Users/User/Documents/BernBeta.R")
post=BernBeta(priorBetaAB = c(100,100),Data = c(rep(1,9),0),showHDI = T,showCentTend = "Mean") #I have changed the prior for sevearl times, and found when the values of a and b get bigger, the mean of posterior gets closer to 0.5. Thus, bigger a and b means a "fair" prior, and will lead to a "fair" result.

post=BernBeta(priorBetaAB = c(0.01,0.01),Data=c(rep(1,9),0), showHDI = T,showCentTend = "Mean") # The smaller values of a and b lead to a "baisd" result. The mean equals to 0.899.

Exercise 6.6

Sorry I don't understand this exercise. Does it mean the posterior mean?
$$
Pr(Heads|y)=\frac{a+1}{10+a+b}
$$

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,572評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,071評論 3 414
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,409評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,569評論 1 307
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,360評論 6 404
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,895評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 42,979評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,123評論 0 286
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,643評論 1 333
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,559評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,742評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,250評論 5 356
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 43,981評論 3 346
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,363評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,622評論 1 280
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,354評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,707評論 2 370

推薦閱讀更多精彩內容

  • 那年二月,還沒過春節,第一批知青到來了。公社給大隊分了八個,除兩兄妹二人外,大隊給每個生產隊分了一人。 初到三天沒...
    談馬閱讀 775評論 2 7
  • 感賞同事大姐給我桃子餅干吃,對我真好 感賞同事帶文具給我兒子 感賞兒子老公帶給我的兩份好工作,有你們我才有這兩份工...
    吳若閱讀 189評論 0 2
  • 6月26日,北京又搖出了新一輪的買車搖號中簽者。搖中者滿心歡喜,未搖中者又是失望一場。買車搖號一直是僧多粥少,這種...
    小易車友會閱讀 200評論 0 1