梵高眼中的世界(二)基于perceptual損失的網(wǎng)絡(luò)

Index

  • Introduction
  • Architecture
    • Image Transformation Network 圖像轉(zhuǎn)換網(wǎng)絡(luò)
      • Residual Connections 殘差連接
      • Down-sampling and Up-sampling
    • Loss Network 損失網(wǎng)絡(luò)

Introduction

本文基于CVPR2016中Fei Fei Li團(tuán)隊(duì)的<Perceptual Losses for Real-Time Style Transfer and Super-Resolution>一文。

在上一篇文章梵高眼中的世界(一)實(shí)時(shí)圖像風(fēng)格轉(zhuǎn)換簡介中,我們介紹了Gatys的算法,對(duì)單張白噪聲圖像進(jìn)行梯度下降。很明顯,假如我們想要做一個(gè)關(guān)于圖像藝術(shù)風(fēng)格轉(zhuǎn)換的app,我們不可能對(duì)每一張用戶上傳的圖像進(jìn)行訓(xùn)練。這不僅需要很長的時(shí)間,還需要很強(qiáng)的計(jì)算力。
我們希望做到實(shí)時(shí)風(fēng)格轉(zhuǎn)換,很明顯我們需要實(shí)現(xiàn)一個(gè)前饋的神經(jīng)網(wǎng)絡(luò)。也就是,對(duì)于每一張圖片,我們只需要將其通過該前饋神經(jīng)網(wǎng)絡(luò),就可以直接得到轉(zhuǎn)換后的圖像。Fei Fei Li團(tuán)隊(duì)的算法做到了這一點(diǎn)。
他們的算法包含兩個(gè)網(wǎng)絡(luò):Image Transfer Network圖像轉(zhuǎn)移網(wǎng)絡(luò),和Loss Network損失網(wǎng)絡(luò)。其中Image Transfer Network即我們需要的前饋神經(jīng)網(wǎng)絡(luò),而Loss Network只作用于訓(xùn)練過程。接下來我們將講解該網(wǎng)絡(luò)框架以及一些細(xì)節(jié)。

Architecture

System overview

由上圖我們能夠清晰地看到整個(gè)網(wǎng)絡(luò)框架。其中左邊虛框中的fw即Image Transfer Network,右邊虛框中的即Loss Network。輸入圖片通過fw網(wǎng)絡(luò),得到y(tǒng)。通過訓(xùn)練后,y即為我們希望得到的風(fēng)格轉(zhuǎn)換后的圖片。y_s為目標(biāo)風(fēng)格圖片,y_c為內(nèi)容圖片。再將y^, y_s, y_c輸入到訓(xùn)練好的VGG16網(wǎng)絡(luò),得到特殊層數(shù)的值計(jì)算Loss,即可使用梯度下降進(jìn)行訓(xùn)練。

Image Transformation Network 圖像轉(zhuǎn)換網(wǎng)絡(luò)

在本文中,圖像風(fēng)格轉(zhuǎn)換網(wǎng)絡(luò)由卷積層以及轉(zhuǎn)置卷積層組成。網(wǎng)絡(luò)結(jié)構(gòu)如下:

  1. 兩層卷積層, strides=[1,2,2,1]
  • conv1: [9,9,3,32]
  • conv2: [3,3,32,64]
  1. 五層殘差連接層:殘差層全為filters為[3,3,64,64], strides=[1,1,1,1]的網(wǎng)絡(luò)。
  2. 兩層轉(zhuǎn)置卷積層, strides=1,1/2,1/2,1
  • convt1: [3,3,64,32]
  • convt2: [3,3,32,3]

Residual Connections 殘差連接

殘差網(wǎng)絡(luò)Residual Network首次出現(xiàn)在ILSVRC大賽中。我們都知道,通常情況下來說越深的網(wǎng)絡(luò)的性能將會(huì)越好。在殘差網(wǎng)絡(luò)出現(xiàn)在ILSVRC前,Alex Net通過ReLu來加速網(wǎng)絡(luò)計(jì)算,并提出Dropout來防止過擬合,奠定了深度學(xué)習(xí)在機(jī)器視覺中的地位。其后的GoogleNet 和 VGG 其實(shí)只是通過加深網(wǎng)絡(luò)的深度以及復(fù)雜度以追求更優(yōu)的性能。然而,當(dāng)我們嘗試更深的網(wǎng)絡(luò)時(shí),會(huì)出現(xiàn)兩個(gè)問題:

  1. 隨著層數(shù)的增加, 會(huì)大大增加訓(xùn)練難度.
  2. 出現(xiàn)梯度消失或梯度爆炸的問題.
    殘差網(wǎng)絡(luò)解決了以上兩個(gè)問題,在ILSVRC中,ResNet的層數(shù)比VGG19多八倍。

以下是Residual Network的結(jié)構(gòu):


Residual Connection

上圖中,我們?cè)O(shè)隱含層為H(x). 我們知道一個(gè)復(fù)雜函數(shù)能夠通過多個(gè)非線性層組合近似, 因此我們可以令H(x)=F(x)+x. 即將非線性的輸出F(x)和線性輸入x相加作為總輸出. 這樣做的好處有:

  1. 比起原來的H(x), F(x)+x更易訓(xùn)練, 大大降低了學(xué)習(xí)難度.
  2. 沒有增加額外的參數(shù).

殘差網(wǎng)絡(luò)的tensorflow實(shí)現(xiàn)如下:

def res_block(x, shape, strides, padding='SAME', projection=True):
'''
    Args:
        x: Input Tensor with shape: [batch size, length, width, channels]
        shape: filter shape
        strides: Strides.
'''
    out = shape[-1]
    bs, w, l, c = x.get_shape().as_list()
    temp = conv_block(x, shape, strides, relu=False)
    if projection == True:
        x = conv_block(x, [1,1,c, out],strides, relu=False)
    else:
         x = tf.pad(x, [[0,0],[0,0],[0,0],[0,out-c]])
    return tf.nn.relu(x+temp)

其中conv_block是一個(gè)簡單的卷積block,只需要使用tf.nn.conv2d即可,注意要設(shè)置relu的屬性。

Down-sampling and Up-sampling

在這里我們使用一個(gè)轉(zhuǎn)置卷積網(wǎng)絡(luò)進(jìn)行up-sampling。
雖然輸入輸出圖片大小一致,先Down-sampling再Up-sampling還是有一定優(yōu)點(diǎn):

  1. 減少計(jì)算量。
  2. 增加有效感知區(qū)域大小。

關(guān)于轉(zhuǎn)置卷積更直觀的理解可以看這個(gè)網(wǎng)站中的動(dòng)圖。

轉(zhuǎn)置卷積在tensorflow可以使用tf.nn.conv2d_transpose(...)模塊,注意strides不需要寫成分?jǐn)?shù)形式。例如1/2的步長則可以寫作strides=[1,2,2,1]

Loss Network 損失網(wǎng)絡(luò)

Loss Network損失網(wǎng)絡(luò)只用于訓(xùn)練過程計(jì)算loss。在訓(xùn)練過程,我們只對(duì)Image Transfer Network 進(jìn)行訓(xùn)練,訓(xùn)練好的VGG網(wǎng)絡(luò)參數(shù)不改變。在訓(xùn)練結(jié)束后,我們只需要Image Transfer Network即可以完成圖像風(fēng)格轉(zhuǎn)換。
本文應(yīng)用遷移學(xué)習(xí),使用了已訓(xùn)練好的VGG16來計(jì)算loss。之所以使用已訓(xùn)練好的網(wǎng)絡(luò),是由于訓(xùn)練好的網(wǎng)絡(luò)中已包含提取高維特征的能力。例如在以下圖像風(fēng)格轉(zhuǎn)換實(shí)例中:


Examples

我們可以觀察到,人物和沙灘,貓臉和貓身體的轉(zhuǎn)換具有明顯區(qū)別。我們可以猜想訓(xùn)練好的Image Transfer Network具有深度提取人物以及貓臉的特征的能力,這種能力來源于我們使用的VGG網(wǎng)絡(luò)。
理解Loss Network為何使用已訓(xùn)練好的VGG后,Loss的具體計(jì)算如下:

Content Loss
Style Loss

其中Φj(y)代表輸入y時(shí)第j層VGG網(wǎng)絡(luò)的輸出。G為前一章所講解的Gram matrix。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,119評(píng)論 6 531
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,382評(píng)論 3 415
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,038評(píng)論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,853評(píng)論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 71,616評(píng)論 6 408
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,112評(píng)論 1 323
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,192評(píng)論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,355評(píng)論 0 288
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,869評(píng)論 1 334
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 40,727評(píng)論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 42,928評(píng)論 1 369
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,467評(píng)論 5 358
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,165評(píng)論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,570評(píng)論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,813評(píng)論 1 282
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 51,585評(píng)論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 47,892評(píng)論 2 372

推薦閱讀更多精彩內(nèi)容