轉錄組下游分析之GSEA

轉載來源https://blog.csdn.net/weixin_43569478/article/details/83745105
GSEA和常規的GO、KEGG的差異在于,GSEA使用的是基因集?;蚣牟町惙治?。GSEA可以清除的說明上調基因和下調基因分別參加了哪些通路,生物學途徑。
GO、KEGG只能給出差異基因的pathway,生物學通路、表達部位等。無法卻分哪部分是上調基因,哪部分是下調基因。

同時說明Y叔的clusterProfiler的包中的gseGO和gseKEGG的genelist個格式。
https://github.com/GuangchuangYu/DOSE/wiki/how-to-prepare-your-own-geneList

gsea的原始數據分為三列,一列是geneid,一列是FoldChange,一列是根據FoldChange排序的結果。

其實gsea就是看foldchange的值的分布,如果是隨機分布,那結果就不理想。我們想要的是在兩端富集分布。
GSEA分析同樣可以使用clusterprofiler包。Y叔的包真的強大,我還要用它做轉錄因子的富集分析。

GSEA的數據集是所有基因的entrez id,和Log2FoldChange的值。不是設置p-value<0.05和log2FoldChange>1過濾后的值。

library(DO.db)
require(DOSE)
library(clusterProfiler)
library(AnnotationHub)
library(readr)
library("genefilter")
library(pheatmap)
library(tidyverse)
library(DESeq2)
library(ggplot2)
library(export)
library(enrichplot)
library(Rgraphviz)
#構造圖片輸出函數,need input filename width height
#函數依賴export包
out_img <- function(filename,pic_width=5,pic_height=7){
  graph2png(file=filename,width=pic_width,height=pic_height)
  graph2ppt(file=filename,width=pic_width,height=pic_height)
  graph2tif(file=filename,width=pic_width,height=pic_height)
}
#all_entrez.csv的第一列是entrezid,第二列是FoldChange的值。
#gse需要單獨做數據格式
d <- read.csv("all_entrez.csv")
geneList <- d[,2]
names(geneList)=as.factor(d[,1])
geneList <- sort(geneList,decreasing = TRUE)

#gseGO進行GSEA分析
#參考連接https://yulab-smu.github.io/clusterProfiler-book/chapter12.html
###gseBP <- gseGO(geneList=geneList,ont="BP",OrgDb=maize,keyType = 'ENTREZID',nPerm = 50000,minGSSize = 100,maxGSSize = 6000,pvalueCutoff = 0.05,verbose = FALSE)

############# GSEA CC 模式 start
ego3 <- gseGO(geneList = geneList,OrgDb = maize,ont = "CC",nPerm = 1000,minGSSize = 100,maxGSSize = 1000,pvalueCutoff = 0.05,verbose = FALSE)
write.csv(ego3,file = "GESA-GO_CC.csv")
#ridgeline plot for expression distribution of GSEA result
ridgeplot(ego3)
out_img(filename = "ridgeplot_CC",pic_width = 12,pic_height = 12)
#只顯示值最高的一組的信息
#gseaplot(ego3,geneSetID = 1,by="runningScore",title=ego3$Description[1])
#gseaplot(ego3,geneSetID = 1,by="preranked",title=ego3$Description[1])
#gseaplot(ego3,geneSetID = 1,title=ego3$Description[1])

#顯示前4組信息
gseaplot2(ego3,geneSetID = 1:4, ES_geom = "dot",pvalue_table = TRUE)
out_img(filename = "gseaplot_CC",pic_width=12,pic_height = 10)

#gsearank(ego3,1,title=ego3[1,"Description"])
############GSEA CC 模式end

############# GSEA BP 模式 start
ego2 <- gseGO(geneList = geneList,OrgDb = maize,ont = "BP",pvalueCutoff = 0.05,verbose = FALSE)
write.csv(ego2,file = "GESA-GO_BP.csv")
#ridgeline plot for expression distribution of GSEA result
ridgeplot(ego2)
out_img(filename = "ridgeplot_BP",pic_width = 12,pic_height = 12)
#只顯示值最高的一組的信息
#gseaplot(ego3,geneSetID = 1,by="runningScore",title=ego3$Description[1])
#gseaplot(ego3,geneSetID = 1,by="preranked",title=ego3$Description[1])
#gseaplot(ego3,geneSetID = 1,title=ego3$Description[1])

#顯示前4組信息
gseaplot2(ego2,geneSetID = 1:4, ES_geom = "dot",pvalue_table = TRUE)
out_img(filename = "gseaplot_BP",pic_width=12,pic_height = 10)

#gsearank(ego3,1,title=ego3[1,"Description"])
############GSEA BP 模式end

############# GSEA MF 模式 start
ego4 <- gseGO(geneList = geneList,OrgDb = maize,ont = "MF",pvalueCutoff = 0.05,verbose = FALSE)
write.csv(ego4,file = "GESA-GO_MF.csv")
#ridgeline plot for expression distribution of GSEA result
ridgeplot(ego4)
out_img(filename = "ridgeplot_MF",pic_width = 12,pic_height = 12)
#只顯示值最高的一組的信息
#gseaplot(ego3,geneSetID = 1,by="runningScore",title=ego3$Description[1])
#gseaplot(ego3,geneSetID = 1,by="preranked",title=ego3$Description[1])
#gseaplot(ego3,geneSetID = 1,title=ego3$Description[1])

#顯示前4組信息
gseaplot2(ego4,geneSetID = 1:4, ES_geom = "dot",pvalue_table = TRUE)
out_img(filename = "gseaplot_MF",pic_width=12,pic_height = 10)

#gsearank(ego3,1,title=ego3[1,"Description"])
############GSEA MF 模式end

#gsaKEGG基因富集分析
kk2 <- gseKEGG(geneList = geneList,organism = 'zma',pvalueCutoff = 0.05,verbose = FALSE)
write.csv(kk2,file="GSEA_KEGG.csv")

gseaplot2(kk2,geneSetID = 1:4,ES_geom = "dot",pvalue_table = TRUE)
out_img(filename="GSEA_KEGG",pic_width = 12,pic_height = 10)
ridgeplot(kk2)
out_img(filename="ridgeplot_GSEA_KEGG",pic_width = 12,pic_height = 12)
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,739評論 6 534
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,634評論 3 419
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,653評論 0 377
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,063評論 1 314
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,835評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,235評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,315評論 3 442
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,459評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,000評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,819評論 3 355
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,004評論 1 370
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,560評論 5 362
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,257評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,676評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,937評論 1 288
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,717評論 3 393
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,003評論 2 374

推薦閱讀更多精彩內容