Transformer-Bert模型學習筆記

Transformer結構

image.png

Self-Attention

image.png

上圖是論文中 Transformer 的內部結構圖,左側為 Encoder block,右側為 Decoder block。紅色圈中的部分為 Multi-Head Attention,是由多個 Self-Attention組成的,可以看到 Encoder block 包含一個 Multi-Head Attention,而 Decoder block 包含兩個 Multi-Head Attention (其中有一個用到 Masked)。Multi-Head Attention 上方還包括一個 Add & Norm 層,Add 表示殘差連接 (Residual Connection) 用于防止網絡退化,Norm 表示 Layer Normalization,用于對每一層的激活值進行歸一化。

Bert模型結構

image.png
  • 干了啥事?


    image.png

輸入部分:


image.png

Input=token emb + segment emb+ position emb
CLS向量+句子+sep分割


image.png

cls向量是啥:


image.png

預訓練如何做

// MLM-掩碼語言模型
無監督

  • AR,也就是autoregressive,我們稱之為自回歸模型;只能考慮單側的信息,典型的就是GPT
    P(我愛吃飯) = P(我)P(愛|我)P(吃|我愛)P(飯|我愛吃);

  • AE,也就是autoencoding,我們稱之為自編碼模型;從損壞的輸入數據中預測重建原始數據。可以使用上下文的信息
    mask之后:【我愛mask飯】文本重建之后預測,前提假設,mask目標相互獨立
    P(我愛吃飯|我愛mask飯)=P(吃|我愛飯)

image.png

隨機mask15%單詞,10%替換成其他,10%保持不變,80%替換為mask。


image.png

// NSP任務
為了做下一句預測。
NSP樣本如下:

  • 從訓練語料庫中取出兩個連續的段落作為正樣本
  • 從不同的文檔中隨機創建一對段落作為負樣本
    缺點:主題預測和連貫性預測合并為一個單項任務

微調的玩法?

image.png

代碼讀一讀

https://zhuanlan.zhihu.com/p/360988428

僅供學習 無關利益

https://www.youtube.com/watch?v=ugWDIIOHtPA&list=PLJV_el3uVTsOK_ZK5L0Iv_EQoL1JefRL4&index=61
https://zhuanlan.zhihu.com/p/338817680
https://arxiv.org/pdf/1810.04805.pdf
https://www.bilibili.com/video/BV1Ey4y1874y?from=search&seid=10522068071476269918&spm_id_from=333.337.0.0
https://zhuanlan.zhihu.com/p/51413773

?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,732評論 6 539
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,214評論 3 426
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 177,781評論 0 382
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,588評論 1 316
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,315評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,699評論 1 327
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,698評論 3 446
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,882評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,441評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,189評論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,388評論 1 372
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,933評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,613評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,023評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,310評論 1 293
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,112評論 3 398
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,334評論 2 377

推薦閱讀更多精彩內容