緩存穿透,緩存擊穿,緩存雪崩解決方案分析

緩存穿透,緩存擊穿,緩存雪崩解決方案分析

前言

設(shè)計(jì)一個(gè)緩存系統(tǒng),不得不要考慮的問題就是:緩存穿透、緩存擊穿與失效時(shí)的雪崩效應(yīng)。

緩存穿透

緩存穿透是指查詢一個(gè)一定不存在的數(shù)據(jù),由于緩存是不命中時(shí)被動(dòng)寫的,并且出于容錯(cuò)考慮,如果從存儲(chǔ)層查不到數(shù)據(jù)則不寫入緩存,這將導(dǎo)致這個(gè)不存在的數(shù)據(jù)每次請求都要到存儲(chǔ)層去查詢,失去了緩存的意義。在流量大時(shí),可能DB就掛掉了,要是有人利用不存在的key頻繁攻擊我們的應(yīng)用,這就是漏洞。

解決方案

有很多種方法可以有效地解決緩存穿透問題,最常見的則是采用布隆過濾器,將所有可能存在的數(shù)據(jù)哈希到一個(gè)足夠大的bitmap中,一個(gè)一定不存在的數(shù)據(jù)會(huì)被 這個(gè)bitmap攔截掉,從而避免了對底層存儲(chǔ)系統(tǒng)的查詢壓力。另外也有一個(gè)更為簡單粗暴的方法(我們采用的就是這種),如果一個(gè)查詢返回的數(shù)據(jù)為空(不管是數(shù) 據(jù)不存在,還是系統(tǒng)故障),我們?nèi)匀话堰@個(gè)空結(jié)果進(jìn)行緩存,但它的過期時(shí)間會(huì)很短,最長不超過五分鐘。

緩存雪崩

緩存雪崩是指在我們設(shè)置緩存時(shí)采用了相同的過期時(shí)間,導(dǎo)致緩存在某一時(shí)刻同時(shí)失效,請求全部轉(zhuǎn)發(fā)到DB,DB瞬時(shí)壓力過重雪崩。

解決方案

緩存失效時(shí)的雪崩效應(yīng)對底層系統(tǒng)的沖擊非常可怕。大多數(shù)系統(tǒng)設(shè)計(jì)者考慮用加鎖或者隊(duì)列的方式保證緩存的單線 程(進(jìn)程)寫,從而避免失效時(shí)大量的并發(fā)請求落到底層存儲(chǔ)系統(tǒng)上。這里分享一個(gè)簡單方案就時(shí)講緩存失效時(shí)間分散開,比如我們可以在原有的失效時(shí)間基礎(chǔ)上增加一個(gè)隨機(jī)值,比如1-5分鐘隨機(jī),這樣每一個(gè)緩存的過期時(shí)間的重復(fù)率就會(huì)降低,就很難引發(fā)集體失效的事件。

緩存擊穿

對于一些設(shè)置了過期時(shí)間的key,如果這些key可能會(huì)在某些時(shí)間點(diǎn)被超高并發(fā)地訪問,是一種非常“熱點(diǎn)”的數(shù)據(jù)。這個(gè)時(shí)候,需要考慮一個(gè)問題:緩存被“擊穿”的問題,這個(gè)和緩存雪崩的區(qū)別在于這里針對某一key緩存,前者則是很多key。

緩存在某個(gè)時(shí)間點(diǎn)過期的時(shí)候,恰好在這個(gè)時(shí)間點(diǎn)對這個(gè)Key有大量的并發(fā)請求過來,這些請求發(fā)現(xiàn)緩存過期一般都會(huì)從后端DB加載數(shù)據(jù)并回設(shè)到緩存,這個(gè)時(shí)候大并發(fā)的請求可能會(huì)瞬間把后端DB壓垮。

解決方案

1.使用互斥鎖(mutex key)

業(yè)界比較常用的做法,是使用mutex。簡單地來說,就是在緩存失效的時(shí)候(判斷拿出來的值為空),不是立即去load db,而是先使用緩存工具的某些帶成功操作返回值的操作(比如Redis的SETNX或者M(jìn)emcache的ADD)去set一個(gè)mutex key,當(dāng)操作返回成功時(shí),再進(jìn)行l(wèi)oad db的操作并回設(shè)緩存;否則,就重試整個(gè)get緩存的方法。

SETNX,是「SET if Not eXists」的縮寫,也就是只有不存在的時(shí)候才設(shè)置,可以利用它來實(shí)現(xiàn)鎖的效果。在redis2.6.1之前版本未實(shí)現(xiàn)setnx的過期時(shí)間,所以這里給出兩種版本代碼參考:

//2.6.1前單機(jī)版本鎖String get(String key) {     String value = redis.get(key);     if (value  == null) {      if (redis.setnx(key_mutex, "1")) {          // 3 min timeout to avoid mutex holder crash          redis.expire(key_mutex, 3 * 60)          value = db.get(key);          redis.set(key, value);          redis.delete(key_mutex);      } else {          //其他線程休息50毫秒后重試          Thread.sleep(50);          get(key);      }    }  }

最新版本代碼:

public String get(key) {      String value = redis.get(key);      if (value == null) { //代表緩存值過期          //設(shè)置3min的超時(shí),防止del操作失敗的時(shí)候,下次緩存過期一直不能load db          if (redis.setnx(key_mutex, 1, 3 * 60) == 1) {  //代表設(shè)置成功               value = db.get(key);                      redis.set(key, value, expire_secs);                      redis.del(key_mutex);              } else {  //這個(gè)時(shí)候代表同時(shí)候的其他線程已經(jīng)load db并回設(shè)到緩存了,這時(shí)候重試獲取緩存值即可                      sleep(50);                      get(key);  //重試              }          } else {              return value;                } }

memcache代碼:

if (memcache.get(key) == null) {      // 3 min timeout to avoid mutex holder crash      if (memcache.add(key_mutex, 3 * 60 * 1000) == true) {          value = db.get(key);          memcache.set(key, value);          memcache.delete(key_mutex);      } else {          sleep(50);          retry();      }  } 

2. "提前"使用互斥鎖(mutex key):

在value內(nèi)部設(shè)置1個(gè)超時(shí)值(timeout1), timeout1比實(shí)際的memcache timeout(timeout2)小。當(dāng)從cache讀取到timeout1發(fā)現(xiàn)它已經(jīng)過期時(shí)候,馬上延長timeout1并重新設(shè)置到cache。然后再從數(shù)據(jù)庫加載數(shù)據(jù)并設(shè)置到cache中。偽代碼如下:

v = memcache.get(key);  if (v == null) {      if (memcache.add(key_mutex, 3 * 60 * 1000) == true) {          value = db.get(key);          memcache.set(key, value);          memcache.delete(key_mutex);      } else {          sleep(50);          retry();      }  } else {      if (v.timeout <= now()) {          if (memcache.add(key_mutex, 3 * 60 * 1000) == true) {              // extend the timeout for other threads              v.timeout += 3 * 60 * 1000;              memcache.set(key, v, KEY_TIMEOUT * 2);                // load the latest value from db              v = db.get(key);              v.timeout = KEY_TIMEOUT;              memcache.set(key, value, KEY_TIMEOUT * 2);              memcache.delete(key_mutex);          } else {              sleep(50);              retry();          }      }  } 

3. "永遠(yuǎn)不過期":

這里的“永遠(yuǎn)不過期”包含兩層意思:

(1) 從redis上看,確實(shí)沒有設(shè)置過期時(shí)間,這就保證了,不會(huì)出現(xiàn)熱點(diǎn)key過期問題,也就是“物理”不過期。

(2) 從功能上看,如果不過期,那不就成靜態(tài)的了嗎?所以我們把過期時(shí)間存在key對應(yīng)的value里,如果發(fā)現(xiàn)要過期了,通過一個(gè)后臺(tái)的異步線程進(jìn)行緩存的構(gòu)建,也就是“邏輯”過期

    從實(shí)戰(zhàn)看,這種方法對于性能非常友好,唯一不足的就是構(gòu)建緩存時(shí)候,其余線程(非構(gòu)建緩存的線程)可能訪問的是老數(shù)據(jù),但是對于一般的互聯(lián)網(wǎng)功能來說這個(gè)還是可以忍受。
String get(final String key) {          V v = redis.get(key);          String value = v.getValue();          long timeout = v.getTimeout();          if (v.timeout <= System.currentTimeMillis()) {              // 異步更新后臺(tái)異常執(zhí)行              threadPool.execute(new Runnable() {                  public void run() {                      String keyMutex = "mutex:" + key;                      if (redis.setnx(keyMutex, "1")) {                          // 3 min timeout to avoid mutex holder crash                          redis.expire(keyMutex, 3 * 60);                          String dbValue = db.get(key);                          redis.set(key, dbValue);                          redis.delete(keyMutex);                      }                  }              });          }          return value;  }

4. 資源保護(hù):

采用netflix的hystrix,可以做資源的隔離保護(hù)主線程池,如果把這個(gè)應(yīng)用到緩存的構(gòu)建也未嘗不可。

四種解決方案:沒有最佳只有最合適

| 解決方案 | 優(yōu)點(diǎn) | 缺點(diǎn) |
| 簡單分布式互斥鎖(mutex key) |

1. 思路簡單

2. 保證一致性

|

1. 代碼復(fù)雜度增大

2. 存在死鎖的風(fēng)險(xiǎn)

3. 存在線程池阻塞的風(fēng)險(xiǎn)

|
| “提前”使用互斥鎖 | 1. 保證一致性 | 同上 |
| 不過期(本文) |

1. 異步構(gòu)建緩存,不會(huì)阻塞線程池

|

1. 不保證一致性。

2. 代碼復(fù)雜度增大(每個(gè)value都要維護(hù)一個(gè)timekey)。

3. 占用一定的內(nèi)存空間(每個(gè)value都要維護(hù)一個(gè)timekey)。

|
| 資源隔離組件hystrix(本文) |

1. hystrix技術(shù)成熟,有效保證后端。

2. hystrix監(jiān)控強(qiáng)大。

|

1. 部分訪問存在降級(jí)策略。

|

四種方案來源網(wǎng)絡(luò),詳文請鏈接:http://carlosfu.iteye.com/blog/2269687?hmsr=toutiao.io&utm_medium=toutiao.io&utm_source=toutiao.io

總結(jié)

針對業(yè)務(wù)系統(tǒng),永遠(yuǎn)都是具體情況具體分析,沒有最好,只有最合適。

最后,對于緩存系統(tǒng)常見的緩存滿了和數(shù)據(jù)丟失問題,需要根據(jù)具體業(yè)務(wù)分析,通常我們采用LRU策略處理溢出,Redis的RDB和AOF持久化策略來保證一定情況下的數(shù)據(jù)安全。

</article>

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,967評(píng)論 6 531
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,273評(píng)論 3 415
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,870評(píng)論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,742評(píng)論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 71,527評(píng)論 6 407
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,010評(píng)論 1 322
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,108評(píng)論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,250評(píng)論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,769評(píng)論 1 333
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 40,656評(píng)論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 42,853評(píng)論 1 369
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,371評(píng)論 5 358
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,103評(píng)論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,472評(píng)論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,717評(píng)論 1 281
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 51,487評(píng)論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 47,815評(píng)論 2 372

推薦閱讀更多精彩內(nèi)容