大數據處理邏輯與關鍵技術(非原創)

文章大綱

一、大數據概念介紹
二、大數據處理邏輯
三、數據庫處理關鍵技術
四、數據相關從業者和角色
五、參考文章

一、大數據概念介紹

http://www.lxweimin.com/p/5b488c39af80

二、大數據處理邏輯

大數據處理的數據級別通常在PB以上(PB是數據存儲容量的單位,它等于2的50次方個字節,或者在數值上大約等于1000個TB)

三、數據庫處理關鍵技術

1. 數據采集主要技術

Sqoop
(發音:skup)作為一款開源的離線數據傳輸工具,主要用于Hadoop(Hive) 與傳統數據庫(MySql,PostgreSQL)間的數據傳遞。它可以將一個關系數據庫中數據導入Hadoop的HDFS中,
也可以將HDFS中的數據導入關系型數據庫中。

Flume
實時數據采集的一個開源框架,它是Cloudera提供的一個高可用用的、高可靠、分布式的海量日志采集、聚合和傳輸的系統。目前已經是Apache的頂級子項目。使用Flume可以收集諸如日志、時間等數據
并將這些數據集中存儲起來供下游使用(尤其是數據流框架,例如Storm)。和Flume類似的另一個框架是Scribe(FaceBook開源的日志收集系統,它為日志的分布式收集、統一處理提供一個可擴展的、高容錯的簡單方案)

Kafka
通常來說Flume采集數據的速度和下游處理的速度通常不同步,因此實時平臺架構都會用一個消息中間件來緩沖,而這方面最為流行和應用最為廣泛的無疑是Kafka。它是由LinkedIn開發的一個分布式消息系統,
以其可以水平擴展和高吞吐率而被廣泛使用。目前主流的開源分布式處理系統(如Storm和Spark等)都支持與Kafka 集成。
Kafka是一個基于分布式的消息發布-訂閱系統,特點是速度快、可擴展且持久。與其他消息發布-訂閱系統類似,Kafka可在主題中保存消息的信息。生產者向主題寫入數據,消費者從主題中讀取數據。
作為一個分布式的、分區的、低延遲的、冗余的日志提交服務。和Kafka類似消息中間件開源產品還包括RabbiMQ、ActiveMQ、ZeroMQ等。

2. 數據處理主要技術

MapReduce
MapReduce是Google公司的核心計算模型,它將運行于大規模集群上的復雜并行計算過程高度抽象為兩個函數:map和reduce。MapReduce最偉大之處在于其將處理大數據的能力賦予了普通開發人員,
以至于普通開發人員即使不會任何的分布式編程知識,也能將自己的程序運行在分布式系統上處理海量數據。

Hive
MapReduce將處理大數據的能力賦予了普通開發人員,而Hive進一步將處理和分析大數據的能力賦予了實際的數據使用人員(數據開發工程師、數據分析師、算法工程師、和業務分析人員)。
Hive是由Facebook開發并貢獻給Hadoop開源社區的,是一個建立在Hadoop體系結構上的一層SQL抽象。Hive提供了一些對Hadoop文件中數據集進行處理、查詢、分析的工具。它支持類似于傳統RDBMS的SQL語言的查詢語言,一幫助那些熟悉SQL的用戶處理和查詢Hodoop在的數據,該查詢語言稱為Hive SQL。Hive SQL實際上先被SQL解析器解析,然后被Hive框架解析成一個MapReduce可執行計劃,并按照該計劃生產MapReduce任務后交給Hadoop集群處理。

Spark
盡管MapReduce和Hive能完成海量數據的大多數批處理工作,并且在打數據時代稱為企業大數據處理的首選技術,但是其數據查詢的延遲一直被詬病,而且也非常不適合迭代計算和DAG(有限無環圖)計算。
由于Spark具有可伸縮、基于內存計算能特點,且可以直接讀寫Hadoop上任何格式的數據,較好地滿足了數據即時查詢和迭代分析的需求,因此變得越來越流行。
Spark是UC Berkeley AMP Lab(加州大學伯克利分校的 AMP實驗室)所開源的類Hadoop MapReduce的通用并行框架,它擁有Hadoop MapReduce所具有的優點,但不同MapReduce的是,
Job中間輸出結果可以保存在內存中,從而不需要再讀寫HDFS ,因此能更好適用于數據挖掘和機器學習等需要迭代的MapReduce算法。
Spark也提供類Live的SQL接口,即Spark SQL,來方便數據人員處理和分析數據。
Spark還有用于處理實時數據的流計算框架Spark Streaming,其基本原理是將實時流數據分成小的時間片段(秒或幾百毫秒),以類似Spark離線批處理的方式來處理這小部分數據。

Storm
MapReduce、Hive和Spark是離線和準實時數據處理的主要工具,而Storm是實時處理數據的。
Storm是Twitter開源的一個類似于Hadoop的實時數據處理框架。Storm對于實時計算的意義相當于Hadoop對于批處理的意義。Hadoop提供了Map和Reduce原語,使對數據進行批處理變得非常簡單和優美。
同樣,Storm也對數據的實時計算提供了簡單的Spout和Bolt原語。Storm集群表面上和Hadoop集群非常像,但是在Hadoop上面運行的是MapReduce的Job,而在Storm上面運行的是Topology(拓撲)。
Storm拓撲任務和Hadoop MapReduce任務一個非常關鍵的區別在于:1個MapReduce Job最終會結束,而1一個Topology永遠運行(除非顯示的殺掉它,),所以實際上Storm等實時任務的資源使用相比離線
MapReduce任務等要大很多,因為離線任務運行完就釋放掉所使用的計算、內存等資源,而Storm等實時任務必須一直占有直到被顯式的殺掉。
Storm具有低延遲、分布式、可擴展、高容錯等特性,可以保證消息不丟失,目前Storm, 類Storm或基于Storm抽象的框架技術是實時處理、流處理領域主要采用的技術。

Flink
在數據處理領域,批處理任務和實時流計算任務一般被認為是兩種不同的任務,一個數據項目一般會被設計為只能處理其中一種任務,例如Storm只支持流處理任務,而MapReduce, Hive只支持批處理任務。
Apache Flink是一個同時面向分布式實時流處理和批量數據處理的開源數據平臺,它能基于同一個Flink運行時(Flink Runtime),提供支持流處理和批處理兩種類型應用的功能。Flink在實現流處理和批處理時,
與傳統的一些方案完全不同,它從另一個視角看待流處理和批處理,將二者統一起來。Flink完全支持流處理,批處理被作為一種特殊的流處理,只是它的數據流被定義為有界的而已。基于同一個Flink運行時,Flink分別提供了流處理和批處理API,而這兩種API也是實現上層面向流處理、批處理類型應用框架的基礎。

Beam
Google開源的Beam在Flink基礎上更進了一步,不但希望統一批處理和流處理,而且希望統一大數據處理范式和標準。Apache Beam項目重點在于數據處理的的編程范式和接口定義,并不涉及具體執行引擎的實現。Apache Beam希望基于Beam開發的數據處理程序可以執行在任意的分布式計算引擎上。
Apache Beam主要由Beam SDK和Beam Runner組成,Beam SDK定義了開發分布式數據處理任務業務邏輯的API接口,生成的分布式數據處理任務Pipeline交給具體的Beam Runner執行引擎。Apache Flink
目前支持的API是由Java語言實現的,它支持的底層執行引擎包括Apache Flink、Apache Spark和Google Cloud Flatform。

3. 數據存儲主要技術

HDFS
Hadoop Distributed File System,簡稱FDFS,是一個分布式文件系統。它有一定高度的容錯性和高吞吐量的數據訪問,非常適合大規模數據集上的應用。HDFS提供了一個高容錯性和高吞吐量的海量數據存儲解決方案。
在Hadoop的整個架構中,HDFS在MapReduce任務處理過程在中提供了對文件操作的和存儲的的支持,MapReduce在HDFS基礎上實現了任務的分發、跟蹤和執行等工作,并收集結果,兩者相互作用,共同完成了
Hadoop分布式集群的主要任務。

HBase
HBase是一種構建在HDFS之上的分布式、面向列族的存儲系統。在需要實時讀寫并隨機訪問超大規模數據集等場景下,HBase目前是市場上主流的技術選擇。
HBase技術來源于Google論文《Bigtable :一個結構化數據的分布式存儲系統》。如同Bigtable利用了Google File System提供的分布式數據存儲方式一樣,HBase在HDFS之上提供了類似于Bigtable的能力。
HBase解決了傳遞數據庫的單點性能極限。實際上,傳統的數據庫解決方案,尤其是關系型數據庫也可以通過復制和分區的方法來提高單點性能極限,但這些都是后知后覺的,安裝和維護都非常復雜。
而HBase從另一個角度處理伸縮性的問題,即通過線性方式從下到上增加節點來進行擴展。
HBase 不是關系型數據庫,也不支持SQL,它的特性如下:
(1)大:一個表可以有上億上,上百萬列。
(2)面向列:面向列表(簇)的存儲和權限控制,列(簇)獨立檢索。
(3)稀疏:為空(null)的列不占用存儲空間,因此表可以設計的非常稀疏。
(4)無模式::每一行都有一個可以排序的主鍵和任意多的列。列可以根據需求動態增加,同一張表中不同的行可以有截然不同的列。
(5)數據多版本:每個單元的數據可以有多個版本,默認情況下,版本號字段分開,它是單元格插入時(6)數據類型單一:HBase中數據都是字符串,沒有類型。

4. 數據應用主要技術

數據有很多應用方式,如固定報表、即時分析、數據服務、數據分析、數據挖掘和機器學習等。下面說下即時分析Drill框架、數據分析R語言、機器學習TensorFlow框架。

Drill
Apache Drill是一個開源實時大數據分布式查詢引擎,目前已成為Apache的頂級項目。Drill開源版本的Google Dremel。Dremel是Google的“交互式”數據分析系統,可以組建成規模上千的集群,處理PB級別的數據。
MapReduce處理數據一般在分鐘甚至小時級別,而Dremel將處理時間縮短至秒級,即Drill是對MapReduce的有力補充。Drill兼容ANSI SQL語法作為接口,支持本地文件、HDFS、Hive、HBase、MongoDb作為存儲的數據查詢。文件格式支持Parquet、CSV、TSV以及Json這種無模式(schema-free)數據。所有這些數據都像傳統數據庫的表查詢一樣進行快速實時查詢。

R語言
R是一種開源的數據分析解決方案。R流行原因如下:
(1)R是自由軟件:完全免費、開源??稍诠俜骄W站及其鏡像中下載任何有關的安裝程序、源代碼、程序包及其源代碼、文檔資料,標準的安裝文件自身就帶有許多模塊和內嵌統計函數,安裝好后可以直接實現許多常用的統計功能。
(2)R是一種可編程的語言:作為一個開放的統計編程環境,R語言的語法通俗易懂,而且目前大多數新的統計方法和技術都可以在R中找到。
(3)R具有很強的互動性:除了圖形輸出在另外的窗口,它的熟入輸出都是在一個窗口進行的,輸入語法中如果有錯馬上會在窗口中給出提示,對以前輸入過的命令有記憶功能,可以隨時再現、編輯、修改以滿足用戶的需要,輸出的圖形可以直接保存為JPG、BMP、PNG等圖片格式,還可以直接保存為PDF文件。此外,R語言和其它編程語言和數據庫直接有很好的接口。

TensorFlow
TensorFlow是一個非常靈活的框架,它能夠運行在個人電腦或服務器的單個/多個cpu和GPU上,甚至是移動設備上,它最早是為了研究機器學習和深度神經網絡而開發的,后來因為通用而開源。
TensorFlow是基于數據流圖的處理框架,TensorFlow節點表示數學運算,邊表示運算節點之間的數據交互。TensorFlow從字母意義上來講有兩層含義:一是Tensor代表的是節點之間傳遞的數據,通常這個數據
是一個多維度矩陣(multidimensional data arrays)或一維向量;二是Flow指的數據流,形象理解就是數據按照流的形式進入數據運算圖的各個節點。

四、數據相關從業者和角色

數據埋點
后臺數據庫和日志文件一般只能滿足常規的統計分析,對于具體的產品和項目來說,一般還要根據項目的目標和分析需求進行針對性的“數據埋點”工作,所謂埋點:就是在額外的正常功能邏輯上添加針對性的邏輯統計,即期望的事件是否發生,發生后應該記錄那些信息,比如用戶在當前頁面是否用鼠標滾動頁面、有關的頁面區域是否曝光了、當前的用戶操作的的時間是多少、停留時長多少、這些都需要前端工程師進行針對性的埋點才能滿足有關的分析需求。
數據埋點工作一般由產品經理和分析師預先確定分析需求,然后由數據開發團隊對接前端和后端開發完成具體的埋點工作。

五、參考文章

  1. https://blog.csdn.net/caiexu/article/details/84847565
  2. https://www.douban.com/group/topic/109858772/
  3. https://blog.csdn.net/lmseo5hy/article/details/79542571
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,818評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,185評論 3 414
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事?!?“怎么了?”我有些...
    開封第一講書人閱讀 175,656評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,647評論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,446評論 6 405
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,951評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,041評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,189評論 0 287
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,718評論 1 333
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,602評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,800評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,316評論 5 358
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,045評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,419評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,671評論 1 281
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,420評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,755評論 2 371

推薦閱讀更多精彩內容

  • Zookeeper用于集群主備切換。 YARN讓集群具備更好的擴展性。 Spark沒有存儲能力。 Spark的Ma...
    Yobhel閱讀 7,300評論 0 34
  • 全球100款大數據工具匯總 Talend Open Studio 是第一家針對的數據集成工具市場的ETL(數據的提...
    Albert陳凱閱讀 1,142評論 0 3
  • 這個是我收集的Unity面試題,為了應對面試,同時幫助大家更好地復習Unity知識點,如果大家發現有什么錯誤,(包...
    BiLi_Unity閱讀 2,885評論 1 5
  • 2018年12月27日 臨沂圣昊造字工廠 廣告字一站式加工基地 擁有6000平方廠房 70名專業人員 專業生產 迷...
    王君崗閱讀 245評論 0 0
  • 宿舍里一直有個大的空箱子,箱子里又是幾團亂遭遭的紙團,都是快遞里面的填充物。箱子就擺在陽臺上,一直擺著,沒人問也沒...
    找棗閱讀 461評論 1 2