2020 年最具潛力 44 個頂級開源項目,涵蓋 11 類 AI 學習框架、平臺(值得收藏)

雷鋒網 AI 開發者按:工欲善其事必先利其器,這也是大部分開發者在日常工作中最重要開發原則。選擇與開發內容相匹配的工具,常常會使我們事半功倍。但面對人工智能的多個領域,如:機器學習、深度學習、NLP等等,多樣的工具有時也讓我們也無從選擇。

就在最近,一個基于 javascript 的可視化庫 D3js(treemap 可視化)對 json 文件生成的技術圖,給開發者提供了詳細的各領域工具清單,內容涵蓋了 11 種極具潛力的 AI 工具類型,雷鋒網 AI 開發者將其整理如下,強烈建議大家收藏~

原文鏈接:https://github.com/haggaishachar/techmap

目錄:Ⅰ、經典機器學習(1-3)Ⅱ、深度學習(4-8)Ⅲ、強化學習(9-12)Ⅳ、自然語言處理(13-18)Ⅴ、語音識別(19-21)Ⅵ、計算機視覺(22-26)Ⅶ、分布式訓練(27-31)Ⅷ、自動建模(32-35)Ⅸ、IDEs系統(36-38)Ⅹ、平臺(39-41)Ⅺ、評分推理系統(42-43)

適用于經典機器學習的工具

一、SciKit-learn star 39.2k fork 19.2k

scikit-learn 是一種強大的基于 Python 語言的機器學習算法庫(https://scikit-learn.org/stable/)。其中,包含了算法預處理,模型參數擇優,回歸與分類等算法,官方文檔包含了每一種算法的例子,代碼簡潔優美,可視化了每一種算法結果,即能學習 python,也是幫助開發者更好理解機器學習算法的便利工具。

尤其在監督學習部分,Scikit-learn 提供了廣義線性模型、支持向量機、最近鄰算法、高斯過程、樸素貝葉斯、決策樹和集成方法等算法教程,同時還介紹了特征選擇、隨即梯度下降算法、線性與二次判別分析等在監督學習中非常重要的概念;而在半監督學習中的標簽傳播算法和無監督學習中的聚類與降維算法方面,也有非常多的教程。

GitHub 地址:https://github.com/scikit-learn/scikit-learn

二、XGBoost star 18.3k fork 7.3k

xgboost 的全稱是 eXtreme Gradient Boosting,它在 Gradient Boosting 框架下實現了 c++機器學習算法。

XGBoost 最大的特點在于,它能夠自動利用 CPU 的多線程進行并行,同時在算法上加以改進提高了精度。它是經過優化的分布式梯度提升庫,可擴展性強,高效、靈活且可移植。

GitHub 地址:https://github.com/dmlc/xgboost

三、Accord.NET star 3.7k fork 1.7k

Accord.NET Framework 是一個.NET 機器學習框架,結合了完全用 C#編寫的音頻和圖像處理庫(http://accord-framework.net/)。

它可用于構建生產級計算機視覺、計算機試聽、信號處理和統計應用程序甚至用于商業用途的完整框架,并為.NET 的應用程序提供了統計分析、機器學習、圖像處理、計算機視覺相關的算法。

GitHub 地址:https://github.com/accord-net/framework

適用于深度學習的工具

TensorFlow 2019 年相關數據

四、TensorFlow star 141k fork 79.8k

TensorFlow 是用于機器學習的端到端開源平臺(https://tensorflow.org),也是 2019 年度 GitHub 上最受歡迎的項目。

它具有工具、庫、社區資源全面且靈活的生態系統,提供穩定的 Python 和 C ++ API,以及其他語言的非保證向后兼容 API;能夠幫助開發者們在 ML 領域的研究與發展,并使開發人員輕松構建和部署 ML 支持的應用程序。

GitHub 地址:https://github.com/tensorflow/tensorflow

五、PyTorch star 35.8k fork 9k

作為 TensorFlow 強有力競爭對手的 PyTorch,也是目前較為主流的深度學習工具之一。

PyTorch 是一個開源的機器學習框架,提供了兩個高級功能,包括:具有強有力的 GPU 加速度的張量計算(如 NumPy),以及基于磁帶自動調整系統構建的深度神經網絡;可加快從研究原型到生產部署的過程。

此前,OpenAI 官方宣布了「全面轉向 PyTorch」的消息,計劃將自家平臺的所有框架統一為 PyTorch,也進一步體現了 PyTorch 在深度學習方面的潛力。

GitHub 地址:https://github.com/pytorch/pytorch

六、MXNET star?18.4k fork 6.5k

MXNet 是一個功能齊全,可編程和可擴展的深入學習框架,支持最先進的深入學習模式(https://mxnet.apache.org/)。

MXNet 提供了混合編程模型(命令式和聲明式)和大量編程語言的代碼(包括 Python、C++、R、Scala、Julia、Matlab 和 JavaScript)的能力,是一個易安裝易上手的開源深度學習工具,它提供了一個 python 接口 gluon,能夠讓開發者迅速搭建起神經網絡,并進行高效訓練。

GitHub 地址:https://github.com/apache/incubator-mxnet

七、Sonnet star 8.1k fork 1.2k

Sonnet 是由 DeepMind 發布的,在 TensorFlow 上用于構建復雜神經網絡的開源庫。

Sonnet 主要用于讓 DeepMind 開發的其它模型更容易共享,Sonnet 可以在內部的其它子模塊中編寫模塊,或者在構建新模塊時傳遞其它模型作為參數;同時,Sonnet 提供實用程序來處理這些任意層次結構,以便于使用不同的 RNN 進行實驗,整個過程無需繁瑣的代碼改寫。

GitHub 地址:https://github.com/deepmind/sonnet

八、DL4J star 11.5k fork 4.8k

DL4J 是采用 java 和 jvm 編寫的開源深度學習庫,支持各種深度學習模型。DL4J 最重要的特點是支持分布式,可以在 Spark 和 Hadoop 上運行,它支持分布式 CPU 和 GPU 運行,并可以利用 Spark 在多臺服務器多個 GPU 上開展分布式的深度學習模型訓練,讓模型運行更快。

DL4J 的基本特性包括:DL4J 中的神經網絡訓練通過簇的迭代并行計算;整個過程由 Hadoop 和 Spark 架構支持;使用 Java 允許開發者在 Android 設備的程序開發周期中使用。

GitHub 地址:https://github.com/eclipse/deeplearning4j

適用于強化學習的工具

九、Gym star 19.6k fork 5.5k

Gym 是一個用于開發和比較強化學習算法的工具(https://gym.openai.com/)。

它無需對 agent 的先驗知識,并且采用 python 作為主要開發語言,因此可以簡單的和 TensorFlow 等深度學習庫進行開發集成,同時直觀的將學習結果用畫面直觀的展示出來。Gym 庫中包含許多可以用于制定強化學習算法的測試問題(即環境),這些環境有共享接口,允許編寫通用的算法。

GitHub 地址:https://github.com/openai/gym

十、Dopamine star 8.7k fork 1.1k

一款基于 Tensorflow 的框架,旨在為新手和經驗豐富的強化學習研究人員提供兼具靈活性、穩定性和可重復性的新工具。

該框架的靈感來源于大腦中獎勵-動機行為的主要成分「多巴胺受體」,這反映了神經科學與強化學習研究之間的強大的歷史聯系,是一個強化學習算法快速原型的研究框架。

GitHub 地址:https://github.com/google/dopamine

十一、ReAgent star 2.4k fork 312

Facebook 推出的一個構建決策推理系統的模塊化端到端平臺,用于推理系統(強化學習、上下文管理等), 可以顯著簡化推理模型構建過程。

ReAgent 由三部分組成:生成決策并接收決策反饋的模型、用于評估新模型部署前性能的模塊及快速迭代的服務平臺。同時,ReAgent 也是創建基于 AI 的推理系統的最全面、模塊化開源平臺,并且是第一個包含策略評估的平臺,將會加速相關決策系統的部署。

GitHub 地址:https://github.com/facebookresearch/ReAgent

十二、Tensorlayer star 5.9k fork 1.3k

這是一個面向科學家的深度學習和強化學習庫。TensorLayer 由底層到上層可以分為三大模塊:神經網絡模塊、工作流模塊、應用模塊。

與 Keras 和 Pytorch 相比,TensorLayer 提高了神經網絡模塊的抽象化設計,同時實現了降低使用現有層和開發新層的工作量。

GitHub 地址:https://github.com/tensorlayer/tensorlayer

適用于自然語言處理的工具

十三、BERT star 21.3k fork 5.8k

BERT 是一個基于雙向 Transformer 的大規模預訓練語言模型,用于對大量未標記的文本數據進行預訓練,以學習一種語言表示形式,這種語言表示形式可用于對特定機器學習任務進行微調。

BERT 被稱為是 NLP 領域中里程碑的進展;目前,BERT 也是 NLP 深度學習中的重要組成部分,很多之后的自然語言處理模型都是在此基礎上優化與改進而得。

GitHub 地址:https://github.com/google-research/bert

十四、Transformers star 21.7k fork 4.8k

Transformers 是神經機器翻譯中使用的一種神經網絡,它主要涉及將輸入序列轉換為輸出序列的任務,這些任務包括語音識別和文本轉換語音。

這類任務需要「記憶」,下一個句子必須與前一個句的上下文相關聯(這是相當關鍵的),以免丟失重要的信息。通過將 attention 應用到正在使用的單詞上,則可以解決當句子太長的時,RNN 或 CNN 無法跟蹤上下文和內容的問題。

GitHub 地址:https://github.com/huggingface/transformers

十五、AllenNLP star 8k fork 1.7k

一個基于 PyTorch 的 NLP 研究庫,利用深度學習來進行自然語言理解,通過處理低層次的細節、提供高質量的參考實現,能輕松快速地幫助研究員構建新的語言理解模型。

AllenNLP 能讓設計和評估新的深度學習模型變得簡單,幾乎適用于任何 NLP 問題,通過利用一些基礎組件,你可以輕松地在云端或是你自己的筆記本上跑模型。

GitHub 地址:https://github.com/allenai/allennlp

十六、flair star 8.1k fork 1k

一款簡單易用的 Python NLP 庫,允許將當前最優自然語言處理(NLP)模型應用于文本,如命名實體識別(NER)、詞性標注(PoS)、詞義消歧和分類。

Flair 基于 Pytorch 的 NLP 框架,它的接口相對更簡單,允許用戶使用和結合不同的詞嵌入和文檔嵌入,包括 Flair 嵌入、BERT 嵌入和 ELMo 嵌入。

GitHub 地址:https://github.com/flairNLP/flair

十七、spaCy star 15.7k fork 2.8k

這是一個具有工業強度級的 Python 自然語言處理工具包。

它已經成為 Python 中最廣泛使用的工業級自然語言庫之一,它提供了當前最佳的準確性和效率,并且有一個活躍的開源社區支持。

GitHub 地址:https://github.com/explosion/spaCy

十八、fastText star 20.5k fork 3.9k

FastText 是 Facebook 人工智能研究實驗室(FAIR)開源的一個文本處理庫,他是一個專門用于文本分類和外文本表示的庫,用于高效文本分類和表示學習。

fastText 的核心是使用「詞袋」的方式,不管文字的順序;但它不是線性的,而是使用分層分類器來將時間復雜度降低到對數級別,并且在具有更高分類數量的大數據集上更高效。

GitHub 地址:https://github.com/facebookresearch/fastText

適用于語音識別的工具

十九、Kaldi star 8.2k fork 3.7k

Kaldi 是目前使用廣泛的開發語音識別應用的框架。

該語音識別工具包使用了 C ++編寫,研究開發人員利用 Kaldi 可以訓練出語音識別神經網路模型,但如果需要將訓練得到的模型部署到移動端設備上,通常需要大量的移植開發工作。

GitHub 地址:https://github.com/kaldi-asr/kaldi

二十、DeepSpeech star 13k fork 2.4k

DeepSpeech 是一個開源語音轉文本引擎,使用基于百度深度語音研究論文的機器學習技術訓練的模型。其中,該項目運用到了 Google 的 TensorFlow 來簡化實施過程。

GitHub 地址:https://github.com/mozilla/DeepSpeech

二十一、wav2letter star 4.8k fork 770

這是由 Facebook 人工智能研究院發布的首個全卷積自動語音識別工具包,它是一個簡單高效的端到端自動語音識別(ASR)系統。

wav2letter 的核心設計基于三個關鍵原則,包括:實現在包含成千上萬小時語音數據集上的高效模型訓練;簡單可擴展模型,可以接入新的網絡架構、損失函數以及其他語音識別系統中的核心操作;以及平滑語音識別模型從研究到生產部署的過渡。

GitHub 地址:https://github.com/facebookresearch/wav2letter

適用于計算機視覺的工具

二十二、YOLO star 16.2k fork 10.4k

YOLO 是當前深度學習領域解決圖像檢測問題最先進的實時系統。在檢測過程中,YOLO 首先將圖像劃分為規定的邊界框,然后對所有邊界框并行運行識別算法,來確定物體所屬的類別。確定類別之后,YOLO 再智能地合并這些邊界框,在物體周圍形成最優邊界框。

這些步驟全部并行進行,因此 YOLO 能夠實現實時運行,并且每秒處理多達 40 張圖像。據官網顯示,在 Pascal Titan X 上,它以 30 FPS 的速度處理圖像,并且在 COCO 測試開發中的 mAP 為 57.9%。

GitHub 地址:https://github.com/allanzelener/YAD2K

二十三、OpenCV star 41.9k fork 32.4k

OpenCV 是英特爾開源的跨平臺計算機視覺庫(https://opencv.org),被稱為 CV 領域開發者與研究者的必備工具包。

這是一套包含從圖像預處理到預訓練模型調用等大量視覺 API 的庫,并可以處理圖像識別、目標檢測、圖像分割和行人再識別等主流視覺任務。其最顯著的特點是它提供了整套流程的工具,因此開發者無需了解各個模型的原理就能用 API 構建視覺任務。它具備 C++、Python 和 Java 接口,支持 Windows、Linux、Mac OS、iOS 和 Android 系統。

GitHub 地址:https://github.com/opencv/opencv

二十四、Detectron2 star 7.7k fork 1.4k

Detectron2 則是 PyTorch 1.3 中一重大新工具,它源于 maskrcnn 基準測試,也是對先前版本 detectron 的一次徹底重寫。

Detectron2 通過全新的模塊化設計,變得更靈活且易于擴展,它能夠在單個或多個 GPU 服務器上提供更快速的訓練速度,包含了更大的靈活性與擴展性,并增強了可維護性和可伸縮性,以支持在生產中的用例。

GitHub 地址:https://github.com/facebookresearch/detectron2

二十五、OpenPose star 15.9k fork 4.7k

OpenPose 人體姿態識別項目是美國卡耐基梅隆大學(CMU)基于卷積神經網絡和監督學習并以 caffe 為框架開發的開源庫。

它可以實現人體動作、面部表情、手指運動等姿態估計。適用于單人和多人,具有極好的魯棒性。是世界上首個基于深度學習的實時多人二維姿態估計應用,很多人體姿態估計實例都是基于它實現,如動作采集、3D 試衣、繪畫輔助等。

GitHub 地址:https://github.com/CMU-Perceptual-Computing-Lab/openpose

二十六、facenet star 10k fork 4.1k

FaceNet 采用了深度卷積神經網絡(CNN)學習將圖像映射到歐式空間,也被稱為通用人臉識別系統。

該系統可從人臉中提取高質量的特征,稱為人臉嵌入(face embeddings),可用于訓練人臉識別系統,從而實現對人臉的驗證。它在 LFW 數據集上測試的準確率達到了 99.63%,在 YouTube Faces DB 數據集上準確率為 95.12%。

GitHub 地址:https://github.com/davidsandberg/facenet

適用于分布式訓練的工具

二十七、Spark MLlib star 25.1k fork 21.1k

Spark 是一個開源集群運算框架,也是現在大數據領域熱門開源軟件之一(https://spark.apache.org/mllib/)。

由于 Spark 使用了內存內運算技術,它在內存上的運算速度比 Hadoop MapReduce 的運算速度快上 100 倍;這也使得 Spark MLlib 分布式計算框架運行非常高效、快速。它可以實現大部分機器學習,如:聚類、分類、回歸等算法,并允許將數據加載至集群內存,多次對其進行查詢,所以非常適合用于機器學習算法。

GitHub 地址:https://github.com/apache/spark

二十八、Mahout star 1.8k fork 930

Mahout 是一個分布式線性代數框架,用于快速創建可擴展的高性能機器學習應用程序(http://mahout.apache.org/)。

Mahout 框架長期以來一直與 Hadoop 綁定,但它的許多算法也可以在 Hadoop 之外運行。它允許多種算法可以跨越分布式 Spark 群集上運行,并且支持 CPU 和 GPU 運行。

GitHub 地址:https://github.com/apache/mahout

二十九、Horovod star 8.5k fork 1.3k

這是由 Uber 開源的一個跨多臺機器的分布式深度學習的 TensorFlow 訓練框架,可以使分布式深度學習快速且易于使用。

據介紹,Horovod 讓開發人員只需幾行代碼就可以完成任務。這不僅加快了初始修改過程,而且進一步簡化了調試。考慮到深度學習項目的高度迭代性,這也可以節省大量時間。除此之外,它還結合了高性能和修補低級模型細節的能力,例如:同時使用高級 api,并使用 NVIDIA 的 CUDA 工具包實現自己的自定義操作符。

GitHub 地址:https://github.com/horovod/horovod

三十、Dask star 6.2k fork 994

當開發者需要并行化到多核時,可以用 Dask 來將計算擴展到多個內核甚至多個機器。

Dask 提供了 NumPy Arrays,Pandas Dataframes 和常規列表的抽象,能夠在無法放入主內存的數據集上并行運行。對大型數據集來說,Dask 的高級集合是 NumPy 和 Pandas 的替代方案。

GitHub 地址:https://github.com/dask/dask

三十一、Ray star 10.3k fork 1.5k

Ray 是一個高性能分布式執行框架,它使用了和傳統分布式計算系統不一樣的架構和對分布式計算的抽象方式,用于快速而簡單的構建和運行分布式應用程序。

Ray 按照典型的 Master-Slave 進行設計。其中,Master 負責全局協調和狀態維護,Slave 執行分布式計算任務。不過和傳統的分布式計算系統不同的是,Ray 使用了混合任務調度的思路,性能更強。

GitHub 地址:https://github.com/ray-project/ray

適用于自動建模的工具

三十二、TPOT star 6.7k fork 1.2k

TPOT 是一個 Python 編寫的軟件包,利用遺傳算法行特征選擇和算法模型選擇,僅需幾行代碼,就能生成完整的機器學習代碼。

在機器學習模型開發圖中,TPOT 所完成的即通過利用遺傳算法,分析數千種可能的組合,為模型、參數找到最佳的組合,從而自動化機器學習中的模型選擇及調參部分。

GitHub 地址:https://github.com/EpistasisLab/tpot

三十三、AutoKeras star 6.6k fork 1.1k

它使用了高效神經架構搜索(ENAS,https://arxiv.org/abs/1802.03268),只需使用 pip install autokeras 就能快速輕松地安裝軟件包,然后就能用自己的數據集來執行自己的架構搜索構建思路。

相比谷歌 AutoML,兩者構建思路類似,但不同的是,AutoKeras 所有代碼都已經開源,可供開發者無償使用。

GitHub 地址:https://github.com/keras-team/autokeras

三十四、Featuretools star 4.6k fork 602

這是一個用于自動化特性工程的開源 python 框架(https://www.featuretools.com/)。

它可以幫助開發者從一組相關數據表中自動構造特征。開發者只需要知道數據表的基本結構和它們之間的關系,然后在實體集(一種數據結構)中指明。然后在有了實體集之后,使用一個名為深度特征合成(DFS)的方法,在一個函數調用中構建出數千個特征。

GitHub 地址:https://github.com/FeatureLabs/featuretools

三十五、NNI star 5.3k fork 683

NNI 是由微軟發布的一個用于神經網絡超參數調整的開源 AutoML 工具包,也是目前較為熱門的 AutoML 開源項目之一。

最新版本的 NNI 對機器學習生命周期的各個環節做了更加全面的支持,包括:特征工程、神經網絡架構搜索(NAS)、超參調優和模型壓縮,開發者都能使用自動機器學習算法來完成,即使是開發小白也能輕松上手。

GitHub 地址:https://github.com/microsoft/nni

三十六、AdaNet star 3k fork 443

AdaNet 是由谷歌開源的一個輕量級的基于 TensorFlow 框架(https://adanet.readthedocs.io/en/v0.8.0/)。

AdaNet 易于使用,并能創建高質量的模型,為 ML 實踐者節省了用于選擇最佳神經網絡架構的時間,實現了一種將學習神經架構作為子網絡集合的自適應算法。

GitHub 地址:https://github.com/tensorflow/adanet

IDEs 系統

三十七、Jupyter star 9.3k fork 2.2k

Jupyter 是一種 Web 應用,涵蓋了跨數十種編程語言的交互式計算。

它能讓用戶將說明文本、數學方程、代碼和可視化內容全部組合到一個易于共享的文檔中,非常方便研究和教學。在數據挖掘平臺 Kaggle 上,使用 Python 的數據開發者大多數選擇了 jupyter 來實現分析和建模的過程。

GitHub 地址:https://github.com/jupyter/jupyter

三十八、Spyder star 5.1k fork 1k

Spyder 是一個 用于科學計算的使用 Python 編程語言的集成開發環境(IDE)。

它結合了綜合開發工具的高級編輯、分析、調試功能以及數據探索、交互式執行、深度檢查和科學包的可視化功能,對于初學者也非常友好。

GitHub 地址:https://github.com/spyder-ide/spyder

三十九、Zeppelin star 4.6k fork 2.2k

Zeppelin 是一款基于 Web 的交互式數據分析平臺。它基于網絡的筆記本,默認使用 Spark 集群作為分析引擎,提供數據可視化的框架,支持數據驅動的交互式數據分析。

通過配置,它也支持包括 SQL、Python、R 等多種數據分析語言,提供數據庫查詢、動態圖表展示、地圖等數據可視化能力,并能夠以 Notebook 的形式保存和分發代碼及分析結果。

GitHub 地址:https://github.com/apache/zeppelin

平臺

四十、H2O star 4.6k fork 1.7k

H2O 是 H2O.ai 公司的完全開源的分布式內存機器學習平臺。H2O 同時支持 R 和 Python,支持最廣泛使用的統計和機器學習算法,包括梯度提升(Gradient Boosting)機器、廣義線性模型、深度學習模型等。

H2O 包括一個自動機器學習模塊,使用自己的算法來構建管道。它對特征工程方法和模型超參數采用了窮舉搜索,優化了管道。H2O 自動化了一些最復雜的數據科學和機器學習工作,例如特征工程、模型驗證、模型調整、模型選擇 和 模型部署。除此之外,它還提供了自動可視化以及機器學習的解釋能力(MLI)。

GitHub 地址:https://github.com/h2oai/h2o-3

四十一、MLflow star 5.9k fork 1.2k

MLflow 是機器學習生命周期的開源平臺,開放接口,可與任何機器學習庫、算法、部署工具或編程語言一起使用,基于 REST API 和簡單的數據格式而構建。是一個開源項目,允許用戶和機器學習庫開發人員可以對其進行擴展。

MLflow 現 alpha 版,提供跟蹤、項目和模型三大組件。MLflow 的跟蹤組件支持記錄和查詢實驗數據,如評估度量指標和參數。MLflow 的項目組件提供了可重復運行的簡單包裝格式。最后,MLflow 的模型組件提供了用于管理和部署模型的工具。

GitHub 地址:https://github.com/mlflow/mlflow

四十二、Kubeflow star 8.3k fork 1.3k

Kubeflow 項目旨在使 Kubernetes 上的機器學習變的輕松、便捷、可擴展,其目標不是重建其他服務,而是提供一種簡便的方式找到最好的 OSS 解決方案。對分布式訓練任務支持。

用于創建和管理交互式 Jupyter notebook 的 JupyterHub,可配置為使用 CPU 或 GPU,并通過單一設置調整至單個集群大小的 TensorFlow 訓練控制器(Tensorflow Training Controller),用于 TF 服務容器(TF Serving container)

GitHub 地址:https://github.com/kubeflow/kubeflow

評分推理系統

四十三、ONNX star 7.8k fork 1.3k

ONNX 是一種針對機器學習所設計的開放式的文件格式,用于存儲訓練好的模型。它使得不同的人工智能框架(如 Pytorch, MXNet)可以采用相同格式存儲模型數據并交互。ONNX 的規范及代碼主要由微軟,亞馬遜,Facebook 和 IBM 等公司共同開發,以開放源代碼的方式托管在 Github 上。

目前官方支持加載 ONNX 模型并進行推理的深度學習框架有: Caffe2, PyTorch, MXNet,ML.NET,TensorRT 和 Microsoft CNTK,并且 TensorFlow 也非官方的支持 ONNX。

GitHub 地址:https://github.com/onnx/onnx

四十四、Seldon star 1.4k fork 296

開源機器學習部署平臺 Seldon Core,讓機器學習模型可以部署于 Kubernetes 上。Seldon Core 的目標,要讓研究人員可以用任何工具包、程序語言建立機器學習模型。

現階段該工具支持模型包含以 Python 為基礎的 TensorFlow、Sklearn,還有 Spark、H2O、R 等知名模型。此外,Seldon Core 也讓機器學習模型可支援 REST、gRPC,讓使用者可以更簡單地整合相關企業應用。

GitHub 地址:https://github.com/SeldonIO/seldon-core

?著作權歸作者所有,轉載或內容合作請聯系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,572評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,071評論 3 414
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,409評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,569評論 1 307
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,360評論 6 404
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,895評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 42,979評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,123評論 0 286
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,643評論 1 333
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,559評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,742評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,250評論 5 356
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 43,981評論 3 346
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,363評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,622評論 1 280
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,354評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,707評論 2 370

推薦閱讀更多精彩內容