動態時間歸整原理及實現(Dynamic Time Warping, DTW)

DTW是一種衡量兩個時間序列之間的相似度的方法,主要應用在語音識別領域來識別兩段語音是否表示同一個單詞。

1. DTW方法原理

在時間序列中,需要比較相似性的兩段時間序列的長度可能并不相等,在語音識別領域表現為不同人的語速不同。而且同一個單詞內的不同音素的發音速度也不同,比如有的人會把‘A’這個音拖得很長,或者把‘i’發的很短。另外,不同時間序列可能僅僅存在時間軸上的位移,亦即在還原位移的情況下,兩個時間序列是一致的。在這些復雜情況下,使用傳統的歐幾里得距離無法有效地求的兩個時間序列之間的距離(或者相似性)。

DTW通過把時間序列進行延伸和縮短,來計算兩個時間序列性之間的相似性:
image
如上圖所示,上下兩條實線代表兩個時間序列,時間序列之間的虛線代表兩個時間序列之間的相似的點。DTW使用所有這些相似點之間的距離的和,稱之為**歸整路徑距離**(Warp Path Distance)來衡量兩個時間序列之間的相似性。

2. DTW計算方法:

令要計算相似度的兩個時間序列為X和Y,長度分別為|X|和|Y|。

2.1歸整路徑(Warp Path)

歸整路徑的形式為W=w<sub>1</sub>,w<sub>2</sub>,...,w<sub>K,</sub>其中Max(|X|,|Y|)<=K<=|X|+|Y|。

w<sub>k</sub>的形式為(i,j),其中i表示的是X中的i坐標,j表示的是Y中的j坐標。

歸整路徑W必須從w1=(1,1)開始,到wK=(|X|,|Y|)結尾,以保證X和Y中的每個坐標都在W中出現。

另外,W中w(i,j)的i和j必須是單調增加的,以保證圖1中的虛線不會相交,所謂單調增加是指:
image
我們最后要得到的歸整路徑是距離最短的一個歸整路徑:
image
其中Dist(w<sub>ki</sub>,w<sub>kj</sub>)為任意經典的距離計算方法,比如歐幾里得距離。w<sub>ki</sub>是指X的第i個數據點,w<sub>kj</sub>是指Y的第j個數據點。

3. DTW實現

在實現DTW時,我們采用動態規劃的思想,其中D(i,j)表示長度為i和j的兩個時間序列之間的歸整路徑距離:
image

我們最后求得的歸整路徑距離為D(|X|,|Y|),使用動態規劃來進行求解:

image

上圖為代價矩陣(Cost Matrix) D,D(i,j)表示長度為i和j的兩個時間序列之間的歸整路徑距離。

3.1 DTW實現的偽代碼為:
int DTWDistance(s: array [1..n], t: array [1..m]) {
    DTW := array [0..n, 0..m]
    for i := 1 to n
        DTW[i, 0] := infinity
    for i := 1 to m
        DTW[0, i] := infinity
    DTW[0, 0] := 0
    for i := 1 to n
        for j := 1 to m
            cost:= d(s[i], t[j])
            DTW[i, j] := cost + minimum(DTW[i-1, j  ],    // insertion
                                        DTW[i  , j-1],    // deletion
                                        DTW[i-1, j-1])    // match
    return DTW[n, m]
}
3.2 DTW實現的Python代碼:
def dtw(X,Y):
     X=[1,2,3,4]
     Y=[1,2,7,4,5]
     M=[[distance(X[i],Y[i]) for i in range(len(X))] for j in range(len(Y))]
     l1=len(X)
     l2=len(Y)
     D=[[0 for i in range(l1+1)] for i in range(l2+1)]
     D[0][0]=0
     for i in range(1,l1+1):
         D[0][i]=sys.maxint
     for j in range(1,l2+1):
         D[j][0]=sys.maxint
     for j in range(1,l2+1):
         for i in range(1,l1+1):
             D[j][i]=M[j-1][i-1]+Min(D[j-1][i],D[j][i-1],D[j-1][i-1]+M[j-1][i-1])
  1. DTW加速

DTW雖然使用線性規劃可以快速的求解,但是在面對比較長的時間序列是,O(N2)的時間復雜度還是很大。已經有很多改進的快速DTW算法,比如FastDTW,SparseDTW,LB_Keogh,LB_Improved等等。

?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,837評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,196評論 3 414
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,688評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,654評論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,456評論 6 406
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,955評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,044評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,195評論 0 287
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,725評論 1 333
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,608評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,802評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,318評論 5 358
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,048評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,422評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,673評論 1 281
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,424評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,762評論 2 372

推薦閱讀更多精彩內容

  • 今天感恩節哎,感謝一直在我身邊的親朋好友。感恩相遇!感恩不離不棄。 中午開了第一次的黨會,身份的轉變要...
    迷月閃星情閱讀 10,590評論 0 11
  • 彩排完,天已黑
    劉凱書法閱讀 4,260評論 1 3
  • 表情是什么,我認為表情就是表現出來的情緒。表情可以傳達很多信息。高興了當然就笑了,難過就哭了。兩者是相互影響密不可...
    Persistenc_6aea閱讀 125,537評論 2 7