原始GAN
Goodfellow和Bengio等人發(fā)表在NIPS 2014年的文章Generative adversary network,是生成對(duì)抗網(wǎng)絡(luò)的開(kāi)創(chuàng)文章,論文思想啟發(fā)自博弈論中的二人零和博弈。在二人零和博弈中,兩位博弈方的利益之和為零或一個(gè)常數(shù),即一方有所得,另一方必有所失。GAN模型中的兩位博弈方分別由生成式模型(generative model)和判別式模型(discriminative model)充當(dāng)。生成模型G捕捉樣本數(shù)據(jù)的分布,判別模型D是一個(gè)二分類器,估計(jì)一個(gè)樣本來(lái)自于訓(xùn)練數(shù)據(jù)(而非生成數(shù)據(jù))的概率。G和D一般都是非線性映射函數(shù),例如多層感知機(jī)、卷積神經(jīng)網(wǎng)絡(luò)等。
如圖所示,左圖是一個(gè)判別式模型,當(dāng)輸入訓(xùn)練數(shù)據(jù)x時(shí),期待輸出高概率(接近1);右圖下半部分是生成模型,輸入是一些服從某一簡(jiǎn)單分布(例如高斯分布)的隨機(jī)噪聲z,輸出是與訓(xùn)練圖像相同尺寸的生成圖像。向判別模型D輸入生成樣本,對(duì)于D來(lái)說(shuō)期望輸出低概率(判斷為生成樣本),對(duì)于生成模型G來(lái)說(shuō)要盡量欺騙D,使判別模型輸出高概率(誤判為真實(shí)樣本),從而形成競(jìng)爭(zhēng)與對(duì)抗。
GAN優(yōu)勢(shì)很多:根據(jù)實(shí)際的結(jié)果,看上去產(chǎn)生了更好的樣本;GAN能訓(xùn)練任何一種生成器網(wǎng)絡(luò);GAN不需要設(shè)計(jì)遵循任何種類的因式分解的模型,任何生成器網(wǎng)絡(luò)和任何鑒別器都會(huì)有用;GAN無(wú)需利用馬爾科夫鏈反復(fù)采樣,無(wú)需在學(xué)習(xí)過(guò)程中進(jìn)行推斷,回避了近似計(jì)算棘手的概率的難題。
GAN主要存在的以下問(wèn)題:網(wǎng)絡(luò)難以收斂,目前所有的理論都認(rèn)為GAN應(yīng)該在納什均衡上有很好的表現(xiàn),但梯度下降只有在凸函數(shù)的情況下才能保證實(shí)現(xiàn)納什均衡。
GAN發(fā)展
一方面GAN的發(fā)展很快,這里只是簡(jiǎn)單粗略將相關(guān)論文分了幾類,歡迎反饋,持續(xù)更新。此外最近ICLR 2017 在進(jìn)行Open Review,可以關(guān)注下ICLR 2017 Conference Track,也有相應(yīng)論文筆記分享ICLR 2017 | GAN Missing Modes 和 GAN
GAN從2014年到現(xiàn)在發(fā)展很快,特別是最近ICLR 2016/2017關(guān)于GAN的論文很多,GAN現(xiàn)在有很多問(wèn)題還有到解決,潛力很大。總體可以將已有的GANs論文分為以下幾類
- GAN Theory
- GAN in Semi-supervised
- Muti-GAN
- GAN with other Generative model
- GAN with RNN
- GAN in Application
GAN Theory
此類關(guān)注與無(wú)監(jiān)督GAN本身原理的研究:比較兩個(gè)分布的距離;用DL的一些方法讓GAN快速收斂等等。相關(guān)論文有:
- GAN: Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems. 2014.
- LAPGAN: Denton, Emily L., Soumith Chintala, and Rob Fergus. "Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks." Advances in neural information processing systems. 2015.
- DCGAN: Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
- Improved GAN: Salimans, Tim, et al. "Improved techniques for training gans." arXiv preprint arXiv:1606.03498 (2016).
- InfoGAN: Chen, Xi, et al. "Infogan: Interpretable representation learning by information maximizing generative adversarial nets." arXiv preprint arXiv:1606.03657(2016).**
- EnergyGAN: Zhao, Junbo, Michael Mathieu, and Yann LeCun. "Energy-based Generative Adversarial Network." arXiv preprint arXiv:1609.03126 (2016).
- Creswell, Antonia, and Anil A. Bharath. "Task Specific Adversarial Cost Function." arXiv preprint arXiv:1609.08661 (2016).
- f-GAN: Nowozin, Sebastian, Botond Cseke, and Ryota Tomioka. "f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization." arXiv preprint arXiv:1606.00709 (2016).
- Unrolled Generative Adversarial Networks, ICLR 2017 Open Review
- Improving Generative Adversarial Networks with Denoising Feature Matching, ICLR 2017 Open Review
- Mode Regularized Generative Adversarial Networks, ICLR 2017 Open Review
- b-GAN: Unified Framework of Generative Adversarial Networks, ICLR 2017 Open Review
- Mohamed, Shakir, and Balaji Lakshminarayanan. "Learning in Implicit Generative Models." arXiv preprint arXiv:1610.03483 (2016).
GAN in Semi-supervised
此類研究將GAN用于半監(jiān)督學(xué)習(xí),相關(guān)論文有:
- Springenberg, Jost Tobias. "Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks." arXiv preprint arXiv:1511.06390 (2015).
- Odena, Augustus. "Semi-Supervised Learning with Generative Adversarial Networks." arXiv preprint arXiv:1606.01583 (2016).
Muti-GAN
此類研究將多個(gè)GAN進(jìn)行組合,相關(guān)論文有:
- CoupledGAN: Liu, Ming-Yu, and Oncel Tuzel. "Coupled Generative Adversarial Networks." arXiv preprint arXiv:1606.07536 (2016).
- Wang, Xiaolong, and Abhinav Gupta. "Generative Image Modeling using Style and Structure Adversarial Networks." arXiv preprint arXiv:1603.05631(2016).
- Generative Adversarial Parallelization, ICLR 2017 Open Review
- LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation, ICLR 2017 Open Review
GAN with other Generative model
此類研究將GAN與其他生成模型組合,相關(guān)論文有:
- Dosovitskiy, Alexey, and Thomas Brox. "Generating images with perceptual similarity metrics based on deep networks." arXiv preprint arXiv:1602.02644(2016).
- Larsen, Anders Boesen Lindbo, S?ren Kaae S?nderby, and Ole Winther. "Autoencoding beyond pixels using a learned similarity metric." arXiv preprint arXiv:1512.09300 (2015).
- Theis, Lucas, and Matthias Bethge. "Generative image modeling using spatial lstms." Advances in Neural Information Processing Systems. 2015.
GAN with RNN
此類研究將GAN與RNN結(jié)合(也以參考Pixel RNN),相關(guān)論文有:
- Im, Daniel Jiwoong, et al. "Generating images with recurrent adversarial networks." arXiv preprint arXiv:1602.05110 (2016).
- Kwak, Hanock, and Byoung-Tak Zhang. "Generating Images Part by Part with Composite Generative Adversarial Networks." arXiv preprint arXiv:1607.05387 (2016).
- Yu, Lantao, et al. "SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient." arXiv preprint arXiv:1609.05473 (2016).
GAN in Application
此類研究將GAN的實(shí)際運(yùn)用(不包括圖像生成),相關(guān)論文有:
- Zhu, Jun-Yan, et al. "Generative visual manipulation on the natural image manifold." European Conference on Computer Vision. Springer International Publishing, 2016.
- Creswell, Antonia, and Anil Anthony Bharath. "Adversarial Training For Sketch Retrieval." European Conference on Computer Vision. Springer International Publishing, 2016.
- Reed, Scott, et al. "Generative adversarial text to image synthesis." arXiv preprint arXiv:1605.05396 (2016).
- Ravanbakhsh, Siamak, et al. "Enabling Dark Energy Science with Deep Generative Models of Galaxy Images." arXiv preprint arXiv:1609.05796(2016).
- Abadi, Martín, and David G. Andersen. "Learning to Protect Communications with Adversarial Neural Cryptography." arXiv preprint arXiv:1610.06918(2016).
- Odena, Augustus, Christopher Olah, and Jonathon Shlens. "Conditional Image Synthesis With Auxiliary Classifier GANs." arXiv preprint arXiv:1610.09585 (2016).
- Ledig, Christian, et al. "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network." arXiv preprint arXiv:1609.04802 (2016).
- Nguyen, Anh, et al. "Synthesizing the preferred inputs for neurons in neural networks via deep generator networks." arXiv preprint arXiv:1605.09304(2016).