Hadoop map和reduce的個數

不同輸入源下的map和reduce數量:

  • 一般情況下,在輸入源是文件的時候,一個task的map數量由splitSize來決定的,那么splitSize是由以下幾個來決定的
    goalSize = totalSize / mapred.map.tasks
    inSize = max {mapred.min.split.size, minSplitSize}
    splitSize = max (minSize, min(goalSize, dfs.block.size))
    一個task的reduce數量,由partition決定。

  • 在輸入源是數據庫的情況下,比如mysql,對于map的數量需要用戶自己指定,比如
    jobconf.set(“mapred.map.tasks.nums”,20);

  • 如果數據源是HBase的話,map的數量就是該表對應的region數量。

hadoop 的并行運算

map和reduce是hadoop的核心功能,hadoop正是通過多個map和reduce的并行運行來實現任務的分布式并行計算,從這個觀點來看,如果將map和reduce的數量設置為1,那么用戶的任務就沒有并行執行,但是map和reduce的數量也不能過多,數量過多雖然可以提高任務并行度,但是太多的map和reduce也會導致整個hadoop框架因為過度的系統資源開銷而使任務失敗。所以用戶在提交map/reduce作業時應該在一個合理的范圍內,這樣既可以增強系統負載勻衡,也可以降低任務失敗的開銷。

1 map的數量

  • map的數量通常是由hadoop集群的HDFS塊大小確定的,也就是輸入文件的總塊數,正常的map數量的并行規模大致是每一個Node是10~100個,對于CPU消耗較小的作業可以設置Map數量為300個左右,但是由于hadoop的每一個任務在初始化時需要一定的時間,因此比較合理的情況是每個map執行的時間至少超過1分鐘。
  • 具體的數據分片是這樣的,InputFormat在默認情況下會根據hadoop集群的HDFS塊大小進行分片,每一個分片會由一個map任務來進行處理,當然用戶還是可以通過參數mapred.min.split.size參數在作業提交客戶端進行自定義設置。還有一個重要參數就是mapred.map.tasks,這個參數設置的map數量僅僅是一個提示,只有當InputFormat 決定了map任務的個數比mapred.map.tasks值小時才起作用。同樣,Map任務的個數也能通過使用JobConf 的conf.setNumMapTasks(int num)方法來手動地設置。這個方法能夠用來增加map任務的個數,但是不能設定任務的個數小于Hadoop系統通過分割輸入數據得到的值。當然為了提高集群的并發效率,可以設置一個默認的map數量,當用戶的map數量較小或者比本身自動分割的值還小時可以使用一個相對較大的默認值,從而提高整體hadoop集群的效率。
  • 我們知道InputFormat決定著InputSplit,每個InputSplit會分配給一個單獨的Mapper,因此InputFormat決定了具體的Map task數量

2 reduece的數量

reduce在運行時往往需要從相關map端復制數據到reduce節點來處理,因此相比于map任務。reduce節點資源是相對比較缺少的,同時相對運行較慢,正確的reduce任務的個數應該是0.95或者1.75 *(節點數 ×mapred.tasktracker.tasks.maximum參數值)。如果任務數是節點個數的0.95倍,那么所有的reduce任務能夠在 map任務的輸出傳輸結束后同時開始運行。如果任務數是節點個數的1.75倍,那么高速的節點會在完成他們第一批reduce任務計算之后開始計算第二批 reduce任務,這樣的情況更有利于負載均衡。同時需要注意增加reduce的數量雖然會增加系統的資源開銷,但是可以改善負載勻衡,降低任務失敗帶來的負面影響。同樣,Reduce任務也能夠與 map任務一樣,通過設定JobConf 的conf.setNumReduceTasks(int num)方法來增加任務個數。

3 reduce數量為0
有些作業不需要進行歸約進行處理,那么就可以設置reduce的數量為0來進行處理,這種情況下用戶的作業運行速度相對較高,map的輸出會直接寫入到 SetOutputPath(path)設置的輸出目錄,而不是作為中間結果寫到本地。同時Hadoop框架在寫入文件系統前并不對之進行排序。

參考文檔

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,923評論 6 535
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,740評論 3 420
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,856評論 0 380
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,175評論 1 315
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,931評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,321評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,383評論 3 443
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,533評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,082評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,891評論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,067評論 1 371
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,618評論 5 362
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,319評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,732評論 0 27
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,987評論 1 289
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,794評論 3 394
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,076評論 2 375

推薦閱讀更多精彩內容