二、對(duì)稱(chēng)加密AES,非對(duì)稱(chēng)加密RSA

目錄

一、對(duì)稱(chēng)加密
?1、對(duì)稱(chēng)加密是什么
?2、對(duì)稱(chēng)加密的優(yōu)點(diǎn)
?3、對(duì)稱(chēng)加密的問(wèn)題
?4、對(duì)稱(chēng)加密的應(yīng)用場(chǎng)景
?5、對(duì)稱(chēng)加密AES的代碼
二、非對(duì)稱(chēng)加密
?1、非對(duì)稱(chēng)加密是什么
?2、非對(duì)稱(chēng)加密的優(yōu)點(diǎn)
?3、非對(duì)稱(chēng)加密的問(wèn)題
?4、非對(duì)稱(chēng)加密的應(yīng)用場(chǎng)景
?5、非對(duì)稱(chēng)加密RSA的代碼


一、對(duì)稱(chēng)加密


1、對(duì)稱(chēng)加密是什么

對(duì)稱(chēng)加密是指加密和解密用的是同一個(gè)密鑰的加密方式。

2、對(duì)稱(chēng)加密的優(yōu)點(diǎn)

對(duì)稱(chēng)加密的特點(diǎn)是加密計(jì)算量小、速度快。

3、對(duì)稱(chēng)加密的問(wèn)題

對(duì)稱(chēng)加密的問(wèn)題是密鑰傳輸問(wèn)題,因?yàn)閷?duì)稱(chēng)加密的做法一般是解密方生成密鑰傳輸給加密方,加密方對(duì)明文加密,然后把密文發(fā)送給解密方,解密方使用密鑰對(duì)密文解密,得到明文,而密鑰在傳輸過(guò)程中很可能被攻擊者截獲,因此對(duì)稱(chēng)加密的安全性就不僅僅取決于加密算法本身的強(qiáng)度,更取決于密鑰是否被安全地傳輸。

4、對(duì)稱(chēng)加密的應(yīng)用場(chǎng)景

對(duì)稱(chēng)加密適用于對(duì)大量數(shù)據(jù)進(jìn)行加密的場(chǎng)景。

5、對(duì)稱(chēng)加密AES的代碼

AES(Advanced Encryption Standard),高級(jí)加密標(biāo)準(zhǔn),是對(duì)稱(chēng)加密的一種,用來(lái)代替DES、3DES。AES采用分組密碼體制,密鑰長(zhǎng)度可以是128位16個(gè)字節(jié)、192位或256位,一共有四種加密模式。

  • 分組密碼體制:所謂分組密碼體制是指AES會(huì)首先把明文切成一段一段的,每段的長(zhǎng)度必須是128位16個(gè)字節(jié),如果最后一段不夠16個(gè)字節(jié)了,就要用Padding來(lái)把這段數(shù)據(jù)填滿(mǎn)16個(gè)字節(jié),然后分別對(duì)每段數(shù)據(jù)進(jìn)行加密,最后再把每段加密數(shù)據(jù)拼接起來(lái)形成最終的密文。而Padding也有三種模式PKCS5、PKCS7和NOPADDING,PKCS5和PKCS7是指分組數(shù)據(jù)缺少幾個(gè)字節(jié),就在數(shù)據(jù)的末尾填充幾個(gè)字節(jié)的幾,比如缺少5個(gè)字節(jié),就在末尾填充5個(gè)字節(jié)的5;NoPadding是指不需要填充,也就是說(shuō)數(shù)據(jù)的發(fā)送方肯定會(huì)保證最后一段數(shù)據(jù)也正好是16個(gè)字節(jié)。那如果在PKCS5模式下,最后一段數(shù)據(jù)的內(nèi)容剛好就是16個(gè)16怎么辦?那解密端就不知道這一段數(shù)據(jù)到底是有效數(shù)據(jù)還是填充數(shù)據(jù)了,因此對(duì)于這種情況,PKCS5模式會(huì)自動(dòng)幫我們?cè)谧詈笠欢螖?shù)據(jù)后再添加16個(gè)字節(jié)的數(shù)據(jù),而且填充數(shù)據(jù)也是16個(gè)16,這樣解密段就能知道誰(shuí)是有效數(shù)據(jù)誰(shuí)是填充數(shù)據(jù)了。解密方需要使用和加密方同樣的Padding模式,才能準(zhǔn)確的識(shí)別有效數(shù)據(jù)和填充數(shù)據(jù),我們開(kāi)發(fā)通常采用PKCS7 Padding模式。

  • 密鑰:AES要求密鑰長(zhǎng)度可以是128位16個(gè)字節(jié)、192位或者256位,位數(shù)越高,加密強(qiáng)度自然越大,但是加密的效率自然會(huì)低一些。我們開(kāi)發(fā)通常采用128位16個(gè)字節(jié)的密鑰,密鑰來(lái)源為服務(wù)端隨機(jī)生成、然后發(fā)送給客戶(hù)端,解密方需要使用和加密方同樣的密鑰。

  • 加密模式:AES一共有四種加密模式,分別是ECB(電子密碼本模式)、CBC(密碼分組鏈接模式)、CFB、OFB,我們通常采用CBC加密模式,解密方需要使用和加密方同樣的加密模式。

ECB模式:最基本的加密模式,即僅僅使用明文和密鑰來(lái)加密數(shù)據(jù),相同的明文塊會(huì)被加密成相同的密文塊,這樣明文和密文的結(jié)構(gòu)將是完全一樣的,就會(huì)更容易被破解,相對(duì)來(lái)說(shuō)不是那么安全,因此很少使用。
CBC模式:比ECB模式多了一個(gè)初始向量IV,加密的時(shí)候,第一個(gè)明文塊會(huì)首先和初始向量IV做異或操作,然后再經(jīng)過(guò)密鑰加密,然后第一個(gè)密文塊又會(huì)作為第二個(gè)明文塊的加密向量來(lái)異或,依次類(lèi)推下去,這樣相同的明文塊加密出的密文塊就是不同的,明文的結(jié)構(gòu)和密文的結(jié)構(gòu)也將是不同的,因此更加安全,我們常用的就是CBC加密模式。
//
//  EncryptUtil.h
//

#import <Foundation/Foundation.h>

@interface EncryptUtil : NSObject

/**
 * AES128加密,輸出Base64編碼
 *
 * @param plainText 明文
 * @param secretKey 密鑰
 *
 * @return 密文
 */
+ (NSString *)aes128CiphertextFromString:(NSString *)plainText secretKey:(NSString *)secretKey iv:(NSString *)iv;

/**
 * AES128解密,輸入Base64編碼
 *
 * @param ciphertext 密文
 * @param secretKey 密鑰
 *
 * @return 明文
 */
+ (NSString *)aes128PlainTextFromString:(NSString *)ciphertext secretKey:(NSString *)secretKey iv:(NSString *)iv;

@end
//
//  EncryptUtil.m
//

#import "EncryptUtil.h"
#import <CommonCrypto/CommonCryptor.h>

@implementation EncryptUtil

+ (NSString *)aes128CiphertextFromString:(NSString *)plainText secretKey:(NSString *)secretKey {
    
    char keyPtr[kCCKeySizeAES128 + 1];
    memset(keyPtr, 0, sizeof(keyPtr));
    [secretKey getCString:keyPtr maxLength:sizeof(keyPtr) encoding:NSUTF8StringEncoding];
    
    NSData *data = [plainText dataUsingEncoding:NSUTF8StringEncoding];
    NSUInteger dataLength = [data length];
    
    int diff = kCCKeySizeAES128 - (dataLength % kCCKeySizeAES128);
    NSUInteger newSize = 0;
    
    if(diff > 0) {
        
        newSize = dataLength + diff;
    }
    
    char dataPtr[newSize];
    memcpy(dataPtr, [data bytes], [data length]);
    for(int i = 0; i < diff; i ++) {
        
        dataPtr[i + dataLength] = 0x00;
    }
    
    size_t bufferSize = newSize + kCCBlockSizeAES128;
    void *buffer = malloc(bufferSize);
    memset(buffer, 0, bufferSize);
    
    size_t numBytesCrypted = 0;
    
    CCCryptorStatus cryptStatus = CCCrypt(kCCEncrypt, // 加密
                                          kCCAlgorithmAES128, // AES128加密
                                          kCCOptionPKCS7Padding, // PKCS7 Padding模式,默認(rèn)CBC加密模式
                                          keyPtr, // 密鑰
                                          kCCKeySizeAES128, // 密鑰長(zhǎng)度
                                          NULL, // 初始向量
                                          dataPtr,
                                          sizeof(dataPtr),
                                          buffer,
                                          bufferSize,
                                          &numBytesCrypted);
    if (cryptStatus == kCCSuccess) {
        
        NSData *resultData = [NSData dataWithBytesNoCopy:buffer length:numBytesCrypted];
        // 轉(zhuǎn)換成Base64并返回
        return [resultData base64EncodedStringWithOptions:NSDataBase64EncodingEndLineWithLineFeed];
    }
    free(buffer);
    return nil;
}

+ (NSString *)aes128PlainTextFromString:(NSString *)ciphertext secretKey:(NSString *)secretKey {
    
    char keyPtr[kCCKeySizeAES128 + 1];
    memset(keyPtr, 0, sizeof(keyPtr));
    [secretKey getCString:keyPtr maxLength:sizeof(keyPtr) encoding:NSUTF8StringEncoding];
    
    NSData *data = [[NSData alloc] initWithBase64EncodedData:[ciphertext dataUsingEncoding:NSUTF8StringEncoding] options:NSDataBase64DecodingIgnoreUnknownCharacters];
    NSUInteger dataLength = [data length];
    size_t bufferSize = dataLength + kCCBlockSizeAES128;
    void *buffer = malloc(bufferSize);
    
    size_t numBytesCrypted = 0;
    CCCryptorStatus cryptStatus = CCCrypt(kCCDecrypt, // 解密
                                          kCCAlgorithmAES128,
                                          kCCOptionPKCS7Padding,
                                          keyPtr,
                                          kCCBlockSizeAES128,
                                          NULL,
                                          [data bytes],
                                          dataLength,
                                          buffer,
                                          bufferSize,
                                          &numBytesCrypted);
    if (cryptStatus == kCCSuccess) {
        
        NSData *resultData = [NSData dataWithBytesNoCopy:buffer length:numBytesCrypted];
        // 轉(zhuǎn)換成普通字符串并返回
        return [[NSString alloc] initWithData:resultData encoding:NSUTF8StringEncoding];
    }
    free(buffer);
    return nil;
}

@end


二、非對(duì)稱(chēng)加密


1、非對(duì)稱(chēng)加密是什么

非對(duì)稱(chēng)加密是指加密和解密用的不是同一個(gè)密鑰的加密方式。

2、非對(duì)稱(chēng)加密的優(yōu)點(diǎn)

非對(duì)稱(chēng)加密的特點(diǎn)是不存在密鑰傳輸問(wèn)題,因?yàn)榉菍?duì)稱(chēng)加密的做法一般是解密方生成一對(duì)兒公私鑰,自己保留私鑰,把公鑰公開(kāi),加密方拿到公鑰對(duì)明文加密,然后把密文發(fā)送給解密方,解密方使用私鑰對(duì)密文解密,得到明文,所以公鑰是隨便你什么人來(lái)拿都行、反正也是用來(lái)加密的、又不是用來(lái)解密的——即就算被截獲了也不怕,只要保管好私鑰就可以了。

3、非對(duì)稱(chēng)加密的問(wèn)題

非對(duì)稱(chēng)加密的問(wèn)題是加密計(jì)算量大、速度慢。

4、非對(duì)稱(chēng)加密的應(yīng)用場(chǎng)景

非對(duì)稱(chēng)加密適用于對(duì)少量數(shù)據(jù)進(jìn)行加密的場(chǎng)景。

5、非對(duì)稱(chēng)加密RSA的代碼

RSA加密是非對(duì)稱(chēng)加密的一種,密鑰長(zhǎng)度一般是1024位或2048位。iOS中使用RSA加密解密,需要用到.der文件和.p12文件。其中.der文件存放的是公鑰、用于加密,.p12文件存放的是私鑰、用于解密。首先我們需要生成這些必要的文件(openssl是SSL/TLS協(xié)議的開(kāi)源實(shí)現(xiàn),可以用來(lái)生成公鑰私鑰、自簽名證書(shū)等):

// 1、指定文件的存儲(chǔ)路徑
打開(kāi)終端,cd一個(gè)文件夾

// 2、生成模長(zhǎng)為1024位的私鑰文件private_key.pem
openssl genrsa -out private_key.pem 1024

// 3、生成證書(shū)請(qǐng)求文件rsaCertReq.csr    
// 注意:這一步會(huì)提示輸入國(guó)家、省份、郵箱等信息,可以根據(jù)實(shí)際情況選擇性填寫(xiě)
openssl req -new -key private_key.pem -out rsaCerReq.csr

// 4、生成證書(shū)rsaCert.crt,并設(shè)置有效時(shí)間為10年
openssl x509 -req -days 3650 -in rsaCerReq.csr -signkey private_key.pem -out rsaCert.crt

// 5、生成供iOS使用的公鑰文件public_key.der
openssl x509 -outform der -in rsaCert.crt -out public_key.der

// 6、生成供iOS使用的私鑰文件private_key.p12  
// 注意:這一步會(huì)提示給私鑰文件設(shè)置密碼,保存下來(lái)。iOS代碼里在解密時(shí),private_key.p12文件需要和這里設(shè)置的密碼配合使用
openssl pkcs12 -export -out private_key.p12 -inkey private_key.pem -in rsaCert.crt

// 7、生成供Java使用的公鑰rsa_public_key.pem
openssl rsa -in private_key.pem -out rsa_public_key.pem -pubout

// 8、生成供Java使用的私鑰pkcs8_private_key.pem
openssl pkcs8 -topk8 -in private_key.pem -out pkcs8_private_key.pem -nocrypt

// 9、使用文件
這時(shí)到指定的文件夾下就可以看到七個(gè)文件,
其中public_key.der和private_key.p12這對(duì)兒公私鑰是供iOS使用的,拖到項(xiàng)目里,
rsa_public_key.pem和pkcs8_private_key.pem這對(duì)兒公私鑰是供Java使用的,發(fā)給他們
它們的根源都來(lái)自一個(gè)私鑰private_key.pem,所以iOS端加密的數(shù)據(jù)后臺(tái)可以解密,反過(guò)來(lái)同理。
//
//  WYRSAEncryptTools.h
//  WYEncryptDemo
//
//  Created by Mac mini on 16/8/23.
//  Copyright ? 2016年 yiyi. All rights reserved.
//

#import <Foundation/Foundation.h>

@interface WYRSAEncryptTools : NSObject

// 當(dāng)我們使用 openssl 生成公鑰和私鑰之后, 把我們前端需要持有那對(duì)文件拖進(jìn)工程里, 然后使用這個(gè)工具類(lèi)里的幾個(gè)方法操作起來(lái)就 ok 了


#pragma mark - 加載公鑰和私鑰
/**
 *  加載公鑰
 *
 *  @param  string  公鑰文件路徑
 */
+ (void)loadPublicKeyWithFilePathString:(NSString *)string;

/**
 *  加載私鑰
 *
 *  @param  string  私鑰文件路徑
 *  @param  string  創(chuàng)建私鑰時(shí)的密碼
 */
+ (void)loadPrivateKeyWithFilePathString:(NSString *)string
                                password:(NSString*)password;


#pragma mark - 公鑰加密

/**
 *  用來(lái)加密字符串
 *
 *  @param  string  明文
 *
 *  return  密文, base64 碼
 */
+ (NSString *)rsaEncryptSourceString:(NSString *)string;

/**
 *  用來(lái)加密二進(jìn)制數(shù)據(jù)
 *
 *  @param  string  明文
 *
 *  return  密文
 */
+ (NSData *)rsaEncryptSourceData:(NSData *)data;


#pragma mark - 私鑰解密

/**
 *  用來(lái)解密字符串密文
 *
 *  @param  string  密文
 *
 *  return  明文
 */
+ (NSString *)rsaDecryptDecryptString:(NSString *)string;

/**
 *  用來(lái)解密二進(jìn)制數(shù)據(jù)密文
 *
 *  @param  data    密文
 *
 *  return  明文
 */
+ (NSData *)rsaDecryptDecryptData:(NSData *)data;

@end
//
//  WYRSAEncryptTools.m
//  WYEncryptDemo
//
//  Created by Mac mini on 16/8/23.
//  Copyright ? 2016年 yiyi. All rights reserved.
//

#import "WYRSAEncryptTools.h"
#import <Security/Security.h>

static SecKeyRef publicKeyRef = nil;
static SecKeyRef privateKeyRef = nil;

@implementation WYRSAEncryptTools

+ (void)loadPublicKeyWithFilePathString:(NSString *)string {
    
    NSData *derData = [[NSData alloc] initWithContentsOfFile:string];
    
    [WYRSAEncryptTools getPublicKeyRefrenceFromeData:derData];
}

+ (void)loadPrivateKeyWithFilePathString:(NSString *)string
                                password:(NSString*)password {
    
    NSData *p12Data = [NSData dataWithContentsOfFile:string];
    
    [WYRSAEncryptTools getPrivateKeyRefrenceFromData:p12Data password:password];
}

+ (NSString *)rsaEncryptSourceString:(NSString *)string {
    
    NSData *data = [WYRSAEncryptTools rsaEncryptSourceData:[string dataUsingEncoding:NSUTF8StringEncoding]];
    
    NSString *encryptString = base64_encode_data(data);
    
    return encryptString;
}

+ (NSData *)rsaEncryptSourceData:(NSData *)data {
    
    if (!data){
        
        return nil;
    }

    if (!publicKeyRef) {
        
        return nil;
    }
    
    return [WYRSAEncryptTools encryptData:data withKeyRef:publicKeyRef];
}

+ (NSString *)rsaDecryptDecryptString:(NSString *)string {
    
    NSData *data = [[NSData alloc] initWithBase64EncodedString:string options:NSDataBase64DecodingIgnoreUnknownCharacters];
    data = [WYRSAEncryptTools rsaDecryptDecryptData:data];
    
    NSString *decryptString = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];
    
    return decryptString;
}

+ (NSData *)rsaDecryptDecryptData:(NSData *)data {
    
    if (!data){
        
        return nil;
    }

    if (!privateKeyRef) {
        
        return nil;
    }
    
    return [WYRSAEncryptTools decryptData:data withKeyRef:privateKeyRef];
}

+ (NSString *)rsaVerifyDecryptString:(NSString *)string {
    
    NSData *data = [[NSData alloc] initWithBase64EncodedString:string options:NSDataBase64DecodingIgnoreUnknownCharacters];
    
    data = [WYRSAEncryptTools rsaVerifyDecryptData:data];
    
    NSString *ret = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];
    
    return ret;
}

+ (NSData *)rsaVerifyDecryptData:(NSData *)data {
    
    if (!data) {
        
        return nil;
    }

    if (!publicKeyRef) {
        
        return nil;
    }
    
    return [WYRSAEncryptTools decryptData:data withKeyRef:publicKeyRef];
}

//static NSString *base64_encode(NSString *str){
//    NSData* data = [str dataUsingEncoding:NSUTF8StringEncoding];
//    if(!data){
//        return nil;
//    }
//    return base64_encode_data(data);
//}

static NSString *base64_encode_data(NSData *data){
    data = [data base64EncodedDataWithOptions:0];
    NSString *ret = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];
    return ret;
}

static NSData *base64_decode(NSString *str){
    NSData *data = [[NSData alloc] initWithBase64EncodedString:str options:NSDataBase64DecodingIgnoreUnknownCharacters];
    return data;
}

+ (NSData *)stripPublicKeyHeader:(NSData *)d_key{
    // Skip ASN.1 public key header
    if (d_key == nil) return(nil);
    
    unsigned long len = [d_key length];
    if (!len) return(nil);
    
    unsigned char *c_key = (unsigned char *)[d_key bytes];
    unsigned int  idx    = 0;
    
    if (c_key[idx++] != 0x30) return(nil);
    
    if (c_key[idx] > 0x80) idx += c_key[idx] - 0x80 + 1;
    else idx++;
    
    // PKCS #1 rsaEncryption szOID_RSA_RSA
    static unsigned char seqiod[] =
    { 0x30,   0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01,
        0x01, 0x05, 0x00 };
    if (memcmp(&c_key[idx], seqiod, 15)) return(nil);
    
    idx += 15;
    
    if (c_key[idx++] != 0x03) return(nil);
    
    if (c_key[idx] > 0x80) idx += c_key[idx] - 0x80 + 1;
    else idx++;
    
    if (c_key[idx++] != '\0') return(nil);
    
    // Now make a new NSData from this buffer
    return([NSData dataWithBytes:&c_key[idx] length:len - idx]);
}

//credit: http://hg.mozilla.org/services/fx-home/file/tip/Sources/NetworkAndStorage/CryptoUtils.m#l1036
+ (NSData *)stripPrivateKeyHeader:(NSData *)d_key{
    // Skip ASN.1 private key header
    if (d_key == nil) return(nil);
    
    unsigned long len = [d_key length];
    if (!len) return(nil);
    
    unsigned char *c_key = (unsigned char *)[d_key bytes];
    unsigned int  idx    = 22; //magic byte at offset 22
    
    if (0x04 != c_key[idx++]) return nil;
    
    //calculate length of the key
    unsigned int c_len = c_key[idx++];
    int det = c_len & 0x80;
    if (!det) {
        c_len = c_len & 0x7f;
    } else {
        int byteCount = c_len & 0x7f;
        if (byteCount + idx > len) {
            //rsa length field longer than buffer
            return nil;
        }
        unsigned int accum = 0;
        unsigned char *ptr = &c_key[idx];
        idx += byteCount;
        while (byteCount) {
            accum = (accum << 8) + *ptr;
            ptr++;
            byteCount--;
        }
        c_len = accum;
    }
    
    // Now make a new NSData from this buffer
    return [d_key subdataWithRange:NSMakeRange(idx, c_len)];
}

+ (SecKeyRef)addPublicKey:(NSString *)key{
    NSRange spos = [key rangeOfString:@"-----BEGIN PUBLIC KEY-----"];
    NSRange epos = [key rangeOfString:@"-----END PUBLIC KEY-----"];
    if(spos.location != NSNotFound && epos.location != NSNotFound){
        NSUInteger s = spos.location + spos.length;
        NSUInteger e = epos.location;
        NSRange range = NSMakeRange(s, e-s);
        key = [key substringWithRange:range];
    }
    key = [key stringByReplacingOccurrencesOfString:@"\r" withString:@""];
    key = [key stringByReplacingOccurrencesOfString:@"\n" withString:@""];
    key = [key stringByReplacingOccurrencesOfString:@"\t" withString:@""];
    key = [key stringByReplacingOccurrencesOfString:@" "  withString:@""];
    
    // This will be base64 encoded, decode it.
    NSData *data = base64_decode(key);
    data = [WYRSAEncryptTools stripPublicKeyHeader:data];
    if(!data){
        return nil;
    }
    
    //a tag to read/write keychain storage
    NSString *tag = @"WYRSAEncryptTools_PubKey";
    NSData *d_tag = [NSData dataWithBytes:[tag UTF8String] length:[tag length]];
    
    // Delete any old lingering key with the same tag
    NSMutableDictionary *publicKey = [[NSMutableDictionary alloc] init];
    [publicKey setObject:(__bridge id) kSecClassKey forKey:(__bridge id)kSecClass];
    [publicKey setObject:(__bridge id) kSecAttrKeyTypeRSA forKey:(__bridge id)kSecAttrKeyType];
    [publicKey setObject:d_tag forKey:(__bridge id)kSecAttrApplicationTag];
    SecItemDelete((__bridge CFDictionaryRef)publicKey);
    
    // Add persistent version of the key to system keychain
    [publicKey setObject:data forKey:(__bridge id)kSecValueData];
    [publicKey setObject:(__bridge id) kSecAttrKeyClassPublic forKey:(__bridge id)
     kSecAttrKeyClass];
    [publicKey setObject:[NSNumber numberWithBool:YES] forKey:(__bridge id)
     kSecReturnPersistentRef];
    
    CFTypeRef persistKey = nil;
    OSStatus status = SecItemAdd((__bridge CFDictionaryRef)publicKey, &persistKey);
    if (persistKey != nil){
        CFRelease(persistKey);
    }
    if ((status != noErr) && (status != errSecDuplicateItem)) {
        return nil;
    }
    
    [publicKey removeObjectForKey:(__bridge id)kSecValueData];
    [publicKey removeObjectForKey:(__bridge id)kSecReturnPersistentRef];
    [publicKey setObject:[NSNumber numberWithBool:YES] forKey:(__bridge id)kSecReturnRef];
    [publicKey setObject:(__bridge id) kSecAttrKeyTypeRSA forKey:(__bridge id)kSecAttrKeyType];
    
    // Now fetch the SecKeyRef version of the key
    SecKeyRef keyRef = nil;
    status = SecItemCopyMatching((__bridge CFDictionaryRef)publicKey, (CFTypeRef *)&keyRef);
    if(status != noErr){
        return nil;
    }
    return keyRef;
}

+ (SecKeyRef)addPrivateKey:(NSString *)key{
    NSRange spos = [key rangeOfString:@"-----BEGIN RSA PRIVATE KEY-----"];
    NSRange epos = [key rangeOfString:@"-----END RSA PRIVATE KEY-----"];
    if(spos.location != NSNotFound && epos.location != NSNotFound){
        NSUInteger s = spos.location + spos.length;
        NSUInteger e = epos.location;
        NSRange range = NSMakeRange(s, e-s);
        key = [key substringWithRange:range];
    }
    key = [key stringByReplacingOccurrencesOfString:@"\r" withString:@""];
    key = [key stringByReplacingOccurrencesOfString:@"\n" withString:@""];
    key = [key stringByReplacingOccurrencesOfString:@"\t" withString:@""];
    key = [key stringByReplacingOccurrencesOfString:@" "  withString:@""];
    
    // This will be base64 encoded, decode it.
    NSData *data = base64_decode(key);
    data = [WYRSAEncryptTools stripPrivateKeyHeader:data];
    if(!data){
        return nil;
    }
    
    //a tag to read/write keychain storage
    NSString *tag = @"WYRSAEncryptTools_PrivKey";
    NSData *d_tag = [NSData dataWithBytes:[tag UTF8String] length:[tag length]];
    
    // Delete any old lingering key with the same tag
    NSMutableDictionary *privateKey = [[NSMutableDictionary alloc] init];
    [privateKey setObject:(__bridge id) kSecClassKey forKey:(__bridge id)kSecClass];
    [privateKey setObject:(__bridge id) kSecAttrKeyTypeRSA forKey:(__bridge id)kSecAttrKeyType];
    [privateKey setObject:d_tag forKey:(__bridge id)kSecAttrApplicationTag];
    SecItemDelete((__bridge CFDictionaryRef)privateKey);
    
    // Add persistent version of the key to system keychain
    [privateKey setObject:data forKey:(__bridge id)kSecValueData];
    [privateKey setObject:(__bridge id) kSecAttrKeyClassPrivate forKey:(__bridge id)
     kSecAttrKeyClass];
    [privateKey setObject:[NSNumber numberWithBool:YES] forKey:(__bridge id)
     kSecReturnPersistentRef];
    
    CFTypeRef persistKey = nil;
    OSStatus status = SecItemAdd((__bridge CFDictionaryRef)privateKey, &persistKey);
    if (persistKey != nil){
        CFRelease(persistKey);
    }
    if ((status != noErr) && (status != errSecDuplicateItem)) {
        return nil;
    }
    
    [privateKey removeObjectForKey:(__bridge id)kSecValueData];
    [privateKey removeObjectForKey:(__bridge id)kSecReturnPersistentRef];
    [privateKey setObject:[NSNumber numberWithBool:YES] forKey:(__bridge id)kSecReturnRef];
    [privateKey setObject:(__bridge id) kSecAttrKeyTypeRSA forKey:(__bridge id)kSecAttrKeyType];
    
    // Now fetch the SecKeyRef version of the key
    SecKeyRef keyRef = nil;
    status = SecItemCopyMatching((__bridge CFDictionaryRef)privateKey, (CFTypeRef *)&keyRef);
    if(status != noErr){
        return nil;
    }
    return keyRef;
}

/* START: Encryption & Decryption with RSA private key */

+ (NSData *)encryptData:(NSData *)data withKeyRef:(SecKeyRef) keyRef{
    const uint8_t *srcbuf = (const uint8_t *)[data bytes];
    size_t srclen = (size_t)data.length;
    
    size_t block_size = SecKeyGetBlockSize(keyRef) * sizeof(uint8_t);
    void *outbuf = malloc(block_size);
    size_t src_block_size = block_size - 11;
    
    NSMutableData *ret = [[NSMutableData alloc] init];
    for(int idx=0; idx<srclen; idx+=src_block_size){
        //NSLog(@"%d/%d block_size: %d", idx, (int)srclen, (int)block_size);
        size_t data_len = srclen - idx;
        if(data_len > src_block_size){
            data_len = src_block_size;
        }
        
        size_t outlen = block_size;
        OSStatus status = noErr;
        status = SecKeyEncrypt(keyRef,
                               kSecPaddingPKCS1,
                               srcbuf + idx,
                               data_len,
                               outbuf,
                               &outlen
                               );
        if (status != 0) {
            NSLog(@"SecKeyEncrypt fail. Error Code: %d", status);
            ret = nil;
            break;
        }else{
            [ret appendBytes:outbuf length:outlen];
        }
    }
    
    free(outbuf);
    CFRelease(keyRef);
    return ret;
}

+ (NSString *)encryptString:(NSString *)str privateKey:(NSString *)privKey{
    NSData *data = [WYRSAEncryptTools encryptData:[str dataUsingEncoding:NSUTF8StringEncoding] privateKey:privKey];
    NSString *ret = base64_encode_data(data);
    return ret;
}

+ (NSData *)encryptData:(NSData *)data privateKey:(NSString *)privKey{
    if(!data || !privKey){
        return nil;
    }
    SecKeyRef keyRef = [WYRSAEncryptTools addPrivateKey:privKey];
    if(!keyRef){
        return nil;
    }
    return [WYRSAEncryptTools encryptData:data withKeyRef:keyRef];
}

+ (NSData *)decryptData:(NSData *)data withKeyRef:(SecKeyRef) keyRef{
    const uint8_t *srcbuf = (const uint8_t *)[data bytes];
    size_t srclen = (size_t)data.length;
    
    size_t block_size = SecKeyGetBlockSize(keyRef) * sizeof(uint8_t);
    UInt8 *outbuf = malloc(block_size);
    size_t src_block_size = block_size;
    
    NSMutableData *ret = [[NSMutableData alloc] init];
    for(int idx=0; idx<srclen; idx+=src_block_size){
        //NSLog(@"%d/%d block_size: %d", idx, (int)srclen, (int)block_size);
        size_t data_len = srclen - idx;
        if(data_len > src_block_size){
            data_len = src_block_size;
        }
        
        size_t outlen = block_size;
        OSStatus status = noErr;
        status = SecKeyDecrypt(keyRef,
                               kSecPaddingNone,
                               srcbuf + idx,
                               data_len,
                               outbuf,
                               &outlen
                               );
        if (status != 0) {
            NSLog(@"SecKeyEncrypt fail. Error Code: %d", status);
            ret = nil;
            break;
        }else{
            //the actual decrypted data is in the middle, locate it!
            int idxFirstZero = -1;
            int idxNextZero = (int)outlen;
            for ( int i = 0; i < outlen; i++ ) {
                if ( outbuf[i] == 0 ) {
                    if ( idxFirstZero < 0 ) {
                        idxFirstZero = I;
                    } else {
                        idxNextZero = I;
                        break;
                    }
                }
            }
            
            [ret appendBytes:&outbuf[idxFirstZero+1] length:idxNextZero-idxFirstZero-1];
        }
    }
    
    free(outbuf);
    CFRelease(keyRef);
    return ret;
}

+ (void)getPublicKeyRefrenceFromeData:(NSData*)derData {
    
    SecCertificateRef myCertificate = SecCertificateCreateWithData(kCFAllocatorDefault, (__bridge CFDataRef)derData);
    SecPolicyRef myPolicy = SecPolicyCreateBasicX509();
    SecTrustRef myTrust;
    OSStatus status = SecTrustCreateWithCertificates(myCertificate,myPolicy,&myTrust);
    SecTrustResultType trustResult;
    if (status == noErr) {
        status = SecTrustEvaluate(myTrust, &trustResult);
    }
    SecKeyRef securityKey = SecTrustCopyPublicKey(myTrust);
    CFRelease(myCertificate);
    CFRelease(myPolicy);
    CFRelease(myTrust);
    
    publicKeyRef = securityKey;
}

+ (void) getPrivateKeyRefrenceFromData: (NSData*)p12Data password:(NSString*)password{
    SecKeyRef securityKey = NULL;
    NSMutableDictionary * options = [[NSMutableDictionary alloc] init];
    [options setObject: password forKey:(__bridge id)kSecImportExportPassphrase];
    CFArrayRef items = CFArrayCreate(NULL, 0, 0, NULL);
    OSStatus securityError = SecPKCS12Import((__bridge CFDataRef) p12Data, (__bridge CFDictionaryRef)options, &items);
    if (securityError == noErr && CFArrayGetCount(items) > 0) {
        CFDictionaryRef identityDict = CFArrayGetValueAtIndex(items, 0);
        SecIdentityRef identityApp = (SecIdentityRef)CFDictionaryGetValue(identityDict, kSecImportItemIdentity);
        securityError = SecIdentityCopyPrivateKey(identityApp, &securityKey);
        if (securityError != noErr) {
            securityKey = NULL;
        }
    }
    CFRelease(items);
    
    privateKeyRef = securityKey;
}

@end

參考

1、AES加密原理:十分鐘讀懂AES加密算法
2、RSA加密原理:RSA加密算法原理(一)RSA加密算法原理(二)

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,572評(píng)論 6 531
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,071評(píng)論 3 414
  • 文/潘曉璐 我一進(jìn)店門(mén),熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人,你說(shuō)我怎么就攤上這事。” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 175,409評(píng)論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀(guān)的道長(zhǎng)。 經(jīng)常有香客問(wèn)我,道長(zhǎng),這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 62,569評(píng)論 1 307
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 71,360評(píng)論 6 404
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 54,895評(píng)論 1 321
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 42,979評(píng)論 3 440
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 42,123評(píng)論 0 286
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,643評(píng)論 1 333
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 40,559評(píng)論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 42,742評(píng)論 1 369
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,250評(píng)論 5 356
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 43,981評(píng)論 3 346
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 34,363評(píng)論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 35,622評(píng)論 1 280
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 51,354評(píng)論 3 390
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 47,707評(píng)論 2 370

推薦閱讀更多精彩內(nèi)容