劍指offer—面試題10:斐波那契數列

寫一個函數,輸入 n ,求斐波那契(Fibonacci)數列的第 n 項。斐波那契數列的定義如下:

F(0) = 0,   F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.

斐波那契數列由 0 和 1 開始,之后的斐波那契數就是由之前的兩數相加而得出。

在沒有接觸動態規劃解法之前,首先想到的就是遞歸。通過遞歸 n-1 ,直到 n 為 0、1 的特值。

直接遞歸

  • 原理: 把 f(n)f(n) 問題的計算拆分成 f(n-1)f(n?1) 和 f(n-2)f(n?2) 兩個子問題的計算,并遞歸,以 f(0)f(0) 和 f(1)f(1) 為終止條件。
  • 缺點: 大量重復的遞歸計算,例如 f(n)f(n) 和 f(n - 1)f(n?1) 兩者向下遞歸需要 各自計算 f(n - 2)f(n?2) 的值。
    func fib(_ n: Int) -> Int {
        if (n == 0) {
            return  0
        }
        if (n == 1) {
            return 1
        }
        return fib(n-1) + fib(n-2)
    }

好吧,如果你用這個代碼提交到力扣上,直接gg。這種方法太過耗時了。


樹中存在很多重復的節點,算法中存在很多重復的計算量。優化策略:我們可以將算好的結果緩存起來,如果下次碰到一樣的計算項時,我們先可以查找緩存。如果查不到在去計算。會大大的節省計算時間。

記憶化遞歸

我們可以使用O(n)的空間來存放計算的結果,每次計算可以查找到之前結果,不用重新計算。

  func fib(_ n: Int) -> Int {
        if (n == 0) {
            return  0
        }
        if (n == 1) {
            return 1
        }
        
        var cache = [Int](repeating: 0, count: n+1)
        cache[1] = 1
        
        for i in 2...n {
            cache[i] = cache[i-1] + cache[i-2]
        }
        return cache[n]
    }

動態規劃

我們也可以通過動態規劃來解決這道問題。目前留個坑,學完動態規劃在回來解決。

?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,797評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,179評論 3 414
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,628評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,642評論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,444評論 6 405
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,948評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,040評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,185評論 0 287
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,717評論 1 333
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,602評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,794評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,316評論 5 358
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,045評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,418評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,671評論 1 281
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,414評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,750評論 2 370

推薦閱讀更多精彩內容