文章均遷移到我的主頁 http://zhenlianghe.com
my github: https://github.com/LynnHo
tf.Variable
- 變量域?
- tf.name_scope和tf.variable_scope都會對tf.Variable生成的變量域造成影響,tf.variable_scope中的reuse參數對tf.Variable沒有影響(本質上是因為tf.Variable受到了tf.variable_scope中同時創建的tf.name_scope的影響)
- 重名?
- 當變量名相同的時候,tf會自動打上序號
with tf.name_scope('s'): # or tf.variable_scope('s') a = tf.Variable(initial_value=10, name='a') b = tf.Variable(initial_value=10, name='a') print(a.name) print(b.name) [out] s/a:0 s/a_1:0
- 當變量名相同的時候,tf會自動打上序號
- 初始化?
- tf.Variable是用一個tensor來初始化的,
a = tf.Variable(initial_value=[1, 2]) b = tf.Variable(initial_value=tf.constant([1, 2])) c = tf.Variable(initial_value=tf.random_uniform(shape=(1, 2))) d = tf.Variable(initial_value=tf.zeros_initializer()(shape=(1, 2), dtype=tf.int64)) e = tf.Variable(initial_value=slim.xavier_initializer()(shape=(1, 2)))
- tf.zeros_initializer()返回的是一個對象,對象對應的類有相應的call函數,這個call函數負責產生一個相應類型的tensor
- slim.xavier_initializer()則返回的是一個函數,調用這個函數能夠產生一個相應類型的tensor
- tf.Variable是用一個tensor來初始化的,
- 變量共享?
- 用生成的變量去干不同的事情不就共享了嘛
- tf.Variable產生的變量不能用tf.variable_scope的reuse設置共享,否則會報錯
tf.get_variable
- 變量域?
- tf.get_variable產生的變量只會受到tf.variable_scope的影響,不受tf.name_scope的影響
with tf.name_scope('s'): a = tf.get_variable(name='a', shape=(10, 10)) with tf.variable_scope('s'): b = tf.get_variable(name='a', shape=(10, 10)) print(a.name) print(b.name) [out] a:0 s/a:0
- tf.get_variable產生的變量只會受到tf.variable_scope的影響,不受tf.name_scope的影響
- 重名?變量共享?
- 在同一個域下,重名是會報錯的。
with tf.variable_scope('s'): a = tf.get_variable(name='a', shape=(10, 10)) b = tf.get_variable(name='a') [out] ValueError: Variable s/a already exists, disallowed. Did you mean to set reuse=True in VarScope?
- 可以在需要復用變量之前改變scope的reuse狀態
with tf.variable_scope('s') as s: a = tf.get_variable(name='a', shape=(10, 10)) s.reuse_variables() b = tf.get_variable(name='a') print(a == b) [out] True
- 也可以設置tf.variable_scope的reuse參數為True來復用已經定義過的同名變量,但如果沒定義過而設置reuse=True也是會報錯的
with tf.variable_scope('s', reuse=True): a = tf.get_variable(name='a') [out] ValueError: Variable s/a does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope?
with tf.variable_scope('s'): a = tf.get_variable(name='a', shape=(10, 10)) with tf.variable_scope('s', reuse=True): b = tf.get_variable(name='a') print(a == b) [out] True
- 可以在需要復用變量之前改變scope的reuse狀態
- 在同一個域下,重名是會報錯的。
- 初始化?
可見,只要給定相應的initializer就可以了,但是要注意dtype的設置,只有設置tf.get_variable的dtype參數才能正確生效,設置initializer的dtype參數是無效的a = tf.get_variable(name='a', shape=(1, 2), initializer=tf.constant_initializer([1, 2]), dtype=tf.int64) b = tf.get_variable(name='b', shape=(1, 2), initializer=tf.random_uniform_initializer()) c = tf.get_variable(name='c', shape=(1, 2), initializer=tf.zeros_initializer(), dtype=tf.int64) d = tf.get_variable(name='d', shape=(1, 2), initializer=slim.xavier_initializer())
slim層里面的variable
- 注意,slim里面的variable生成機制實際上是和tf.get_variable是一樣的,所以特性也是一樣的,比如說變量域只受tf.variable_scope影響而不受tf.name_scope影響
- 層的命名
- 自動命名變量域,每一個slim層都有一個scope參數,如果不設置這個參數(默認為None),會有以下兩種情況
- 在同一個上下問管理器中(with tf.variable_scope('s'):)定義層,slim會按生成順序自動命名變量域(本質上就是因為slim層里面利用了with tf.variable_scope(None, default_name, ...)的機制)
x = tf.placeholder(tf.float32, shape=[None, 10]) with tf.variable_scope('s'): a = slim.fully_connected(x, 10) b = slim.fully_connected(a, 10) for var in tf.trainable_variables(): print(var.name) [out] s/fully_connected/weights:0 s/fully_connected/biases:0 s/fully_connected_1/weights:0 s/fully_connected_1/biases:0
- 在不同的上下問管理器中定義層,但域名是一樣的,slim將報錯
- 報錯的例子
x = tf.placeholder(tf.float32, shape=[None, 10]) with tf.variable_scope('s'): a = slim.fully_connected(x, 10) with tf.variable_scope('s'): b = slim.fully_connected(x, 10) for var in tf.trainable_variables(): print(var.name) [out] Variable s/fully_connected/weights already exists, disallowed. Did you mean to set reuse=True in VarScope?
- 報錯的例子
x = tf.placeholder(tf.float32, shape=[None, 10]) with tf.variable_scope('s'): a = slim.layer_norm(x) with tf.variable_scope('s'): b = slim.layer_norm(x) for var in tf.trainable_variables(): print(var.name) [out] ValueError: Variable s/LayerNorm/beta already exists, disallowed. Did you mean to set reuse=True in VarScope?
- 報錯的例子
- 在同一個上下問管理器中(with tf.variable_scope('s'):)定義層,slim會按生成順序自動命名變量域(本質上就是因為slim層里面利用了with tf.variable_scope(None, default_name, ...)的機制)
- 手動命名變量域,顧名思義。需要注意以下情況
- 在同一個域中,如果兩個層設置的scope參數是同一個名字,那么slim將報錯
-
報錯的例子
x = tf.placeholder(tf.float32, shape=[None, 2]) with tf.variable_scope('s'): a = slim.fully_connected(x, 2, scope='a') with tf.variable_scope('s'): # 在這個例子中,這一行可有可無,效果相同 b = slim.fully_connected(x, 2, scope='a') for var in tf.trainable_variables(): print(var.name) [out] Variable s/a/weights already exists, disallowed. Did you mean to set reuse=True in VarScope?
-
報錯的例子
x = tf.placeholder(tf.float32, shape=[None, 10]) with tf.variable_scope('s'): a = slim.layer_norm(x, scope='a') with tf.variable_scope('s'): # 在這個例子中,這一行可有可無,效果相同 b = slim.layer_norm(x, scope='a') [out] ValueError: Variable s/a/beta already exists, disallowed. Did you mean to set reuse=True in VarScope?
-
- 在同一個域中,如果兩個層設置的scope參數是同一個名字,那么slim將報錯
- 自動命名變量域,每一個slim層都有一個scope參數,如果不設置這個參數(默認為None),會有以下兩種情況
- 那么最合理的變量共享方式???實際上是和tf.get_variable定義的變量的共享機制是一樣的,用reuse參數
x = tf.placeholder(tf.float32, shape=[None, 2]) with tf.variable_scope('s'): y = slim.fully_connected(x, 2, weights_initializer=tf.random_normal_initializer()) a = slim.layer_norm(y) with tf.variable_scope('s', reuse=True): y = slim.fully_connected(x, 2) b = slim.layer_norm(y) for var in tf.trainable_variables(): print(var.name) sess = tf.Session() sess.run(tf.global_variables_initializer()) print(sess.run(a, feed_dict={x: [[1, 7]]})) print(sess.run(b, feed_dict={x: [[1, 7]]})) [out] s/fully_connected/weights:0 s/fully_connected/biases:0 s/LayerNorm/beta:0 s/LayerNorm/gamma:0 [[-1. 1.00000012]] [[-1. 1.00000012]]