一:簡介
通過抓取豆瓣電影Top250的數據,分別進行了三個數據統計,分別是:上榜的電影上映的年份,該年份總共上榜的電影數量,數量為0的就沒有統計了;各個國家地區出品的電影數量;250部電影的各個類型標簽的數量。
二:源代碼
#coding=utf-8
import requests
from bs4 import BeautifulSoup
import os, socket, re
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
class Spider:
def __init__(self, url='https://movie.douban.com/top250'):
self.url = url
self.header = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36"
}
def mkdir(self, path):
path = path.strip()
isExists = os.path.exists(os.path.join("D:\mdouban", path))
if not isExists:
os.makedirs(os.path.join("D:\mdouban", path))
os.chdir(os.path.join("D:\mdouban", path))
else:
os.chdir(os.path.join("D:\mdouban", path))
return os.path.abspath('.')
#獲取BeautifulSoup
def get_soup(self, link):
html = requests.get(link, headers=self.header)
html.encoding = html.apparent_encoding
soup = BeautifulSoup(html.text, 'lxml')
return soup
if __name__ == '__main__':
socket.setdefaulttimeout(20)
spider = Spider()
path = spider.mkdir('top250')
print('starting get data from douban...')
def autolabel(rects, ax, xpos='center'): #設置顯示每一個條形圖的值
"""
Attach a text label above each bar in *rects*, displaying its height.
*xpos* indicates which side to place the text w.r.t. the center of
the bar. It can be one of the following {'center', 'right', 'left'}.
"""
xpos = xpos.lower() # normalize the case of the parameter
ha = {'center': 'center', 'right': 'left', 'left': 'right'}
offset = {'center': 0.5, 'right': 0.57, 'left': 0.43} # x_txt = x + w*off
for rect in rects:
height = rect.get_height()
ax.text(rect.get_x() + rect.get_width() * offset[xpos], 1.01 * height,
'{}'.format(height), ha=ha[xpos], va='bottom', size=6.8)
def drawYearPlot(num_list, name_list): #繪制X軸為年份,Y軸為電影數量的柱狀圖
ind = np.arange(len(name_list))
fig, ax = plt.subplots()
ax.set_xlabel('year')
ax.set_ylabel('numbers')
ax.set_title('Douban top 250 movie numbers by year')
rext = ax.bar(ind, num_list, color='b', tick_label=name_list)
autolabel(rext, ax)
plt.xticks(np.arange(len(name_list)), rotation=-90, size=7.2) # 設置X軸坐標的屬性
fig = plt.gcf()
fig.set_size_inches(15.5, 10.5) # 設置圖片大小
plt.savefig('D:/mdouban/douban_year.png', dpi=200) # 保存統計圖到本地,必須在show()方法前調用,否則得到的是一張空白圖片,dpi是分辨率
plt.show()
plt.close()
def drawCountryPlot(cry_list): #繪制X軸為國家地區,Y軸為電影數量的柱狀圖
sta = {}
for i in cry_list: #統計各個國家的電影數量
if not sta.__contains__(i):
sta[i] = 1
else:
sta[i] += 1
num_l = [] #數量
country_list = [] #國家地區
for key, values in sta.items():
country_list.append(key)
num_l.append(values)
ind = np.arange(len(country_list))
fig, ax = plt.subplots()
ax.set_xlabel('country')
ax.set_ylabel('numbers')
ax.set_title('Douban top 250 movie numbers by country')
rext = ax.bar(ind, num_l, color='b', tick_label=country_list)
autolabel(rext, ax)
plt.xticks(np.arange(len(country_list)), size=7.2) # 設置X軸坐標的屬性
fig = plt.gcf()
fig.set_size_inches(15.5, 10.5) # 設置圖片大小
plt.savefig('D:/mdouban/douban_country.png', dpi=200) # 保存統計圖到本地,必須在show()方法前調用,否則得到的是一張空白圖片,dpi是分辨率
plt.show()
plt.close()
def drawTypePlot(typ_list): #繪制X軸為電影的標簽,Y軸為數量的柱狀圖
sta = {}
for i in typ_list: #統計各個國家的電影數量
if not sta.__contains__(i):
sta[i] = 1
else:
sta[i] += 1
num_l = [] #數量
tp_list = [] #電影類型
for key, values in sta.items():
tp_list.append(key)
num_l.append(values)
ind = np.arange(len(tp_list))
fig, ax = plt.subplots()
ax.set_xlabel('type')
ax.set_ylabel('numbers')
ax.set_title('Douban top 250 movie number by type')
rext = ax.bar(ind, num_l, color='b', tick_label=tp_list)
autolabel(rext, ax)
plt.xticks(np.arange(len(tp_list)), size=7.2) # 設置X軸坐標的屬性
fig = plt.gcf()
fig.set_size_inches(15.5, 10.5) # 設置圖片大小
plt.savefig('D:/mdouban/douban_type.png', dpi=200) # 保存統計圖到本地,必須在show()方法前調用,否則得到的是一張空白圖片,dpi是分辨率
plt.show()
plt.close()
#top250共十頁
ys = [] #存儲年份
cs = [] #存儲國家地區
ts = [] #存儲電影類別
#解決matplotlib顯示中文亂碼問題
mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默認字體 SimHei為黑體
mpl.rcParams['axes.unicode_minus'] = False # 用來正常顯示負號
x = 1
for i in range(1, 11):
if i == 1:
url = spider.url
else:
url = spider.url + '?start=' + str(25*(i-1)) + '&filter=' #后面9頁的鏈接需要拼接
main_soup = spider.get_soup(url)
ol_grid = main_soup.find('ol', class_='grid_view')
li = ol_grid.find_all('li')
for l in li:
em_rank = l.find('em').get_text()
div_hd = l.find('div', class_='hd')
a = div_hd.find('a')
title = a.find('span', class_='title').get_text()
p_info = l.find('p', class_='').get_text()
s_c = p_info.split('/')[-2].strip()
country = s_c.split()[0] #獲取國家地區字段,取第一個
cs.append(country)
l_typ = p_info.split('/')[-1].strip().split() #獲取電影類型的數組
for typ in l_typ:
ts.append(typ)
s1 = ''.join(p_info.split()) #去掉字符串中的\xa0
l_s = s1.split('/')
if x == 80:
year = '1961' #第80的大鬧天宮上映了多次,特殊處理
else:
year = l_s[-3][-4:] #電影的上映年份
x += 1
ys.append(year)
div_star = l.find('div', class_='star')
rating_num = div_star.find('span', class_='rating_num').get_text()
review = div_star.find_all('span')[3].get_text()
div_bd = l.find('div', class_='bd')
q = div_bd.find('span', class_='inq')
if q != None: #部分電影是沒有短評的,所以需要判斷
quote = q.get_text()
else:
quote = '無'
name_list = []
sta = {}
for i in range(1931, 2018): #柱狀圖的X軸坐標
name_list.append(i)
sta[str(i)] = 0
for x in ys: #統計從1931到2017每年在榜單中的電影數量
sta[x] += 1
num_list = []
name_list1 = []
for key, value in sta.items():
if value > 0: #只顯示電影數量大于0的
name_list1.append(str(key))
num_list.append(value)
drawYearPlot(num_list, name_list1)
drawCountryPlot(cs)
drawTypePlot(ts)
print('over!')
三:生成的柱狀圖
douban_country.png
douban_type.png
douban_year.png