使用 iOS OpenGL ES 實現長腿功能

本文介紹了如何使用 OpenGL ES 來實現長腿功能。學習這個例子可以加深我們對紋理渲染流程的理解。另外,還會著重介紹一下「渲染到紋理」這個新知識點。

警告: 本文屬于進階教程,閱讀前請確保已經熟悉 OpenGL ES 紋理渲染的相關概念,否則強行閱讀可能導致走火入魔。傳送門

注: 下文中的 OpenGL ES 均指代 OpenGL ES 2.0。

一、效果展示

首先來看一下最終的效果,這個功能簡單來說,就是實現了圖片的局部拉伸,從邏輯上來說并不復雜。

二、思路

1、怎么實現拉伸

我們來回憶一下,我們要渲染一張圖片,需要將圖片拆分成兩個三角形,如下所示:

如果我們想對圖片進行拉伸,很簡單,只需要修改一下 4 個頂點坐標的 Y 值即可。

那么,如果我們只想對圖片中間的部分進行拉伸,應該怎么做呢?

其實答案也很容易想到,我們只需要修改一下圖片的拆分方式。如下所示,我們把圖片拆分成了 6 個三角形,也可以說是 3 個小矩形。這樣,我們只需要對中間的小矩形做拉伸處理就可以了。

2、怎么實現重復調整

我們觀察上面的動態效果圖,可以看到第二次的壓縮操作,是基于第一次的拉伸操作的結果來進行的。因此,在每一步我們都需要拿到上一步的結果,作為原始圖,進行再次調整。

這里的「原始圖」就是一個紋理。換句話說,我們需要將每一次的調整結果,都重新生成一個紋理,供下次調整的時候使用。

這一步是本文的重點,我們會通過「渲染到紋理」的方式來實現,具體的步驟我們在后面會詳細介紹。

三、為什么要使用 OpenGL ES

可能有人會說:你這個功能平平無奇,就算不懂 OpenGL ES,我用其它方式也能實現呀

確實,在 iOS 中,我們繪圖一般是使用 CoreGraphics。假設我們使用 CoreGraphics,也按照上面的實現思路,對原圖進行拆分繪制,重復調整的時候進行重新拼接,目測也是能實現相同的功能。

但是,由于 CoreGraphics 繪圖依賴于 CPU,當我們在調節拉伸區域的時候,需要不斷地進行重繪,此時 CPU 的占用必然會暴漲,從而引起卡頓。而使用 OpenGL ES 則不存在這樣的問題。

四、實現拉伸邏輯

從上面我們知道,渲染圖片我們需要 8 個頂點,而拉伸邏輯的關鍵就是頂點坐標的計算,在拿到計算結果后再重新渲染。

計算頂點的關鍵步驟如下:

/**
 根據當前控件的尺寸和紋理的尺寸,計算初始紋理坐標

 @param size 原始紋理尺寸
 @param startY 中間區域的開始縱坐標位置 0~1
 @param endY 中間區域的結束縱坐標位置 0~1
 @param newHeight 新的中間區域的高度
 */
- (void)calculateOriginTextureCoordWithTextureSize:(CGSize)size
                                            startY:(CGFloat)startY
                                              endY:(CGFloat)endY
                                         newHeight:(CGFloat)newHeight {
    CGFloat ratio = (size.height / size.width) *
                    (self.bounds.size.width / self.bounds.size.height);
    CGFloat textureWidth = self.currentTextureWidth;
    CGFloat textureHeight = textureWidth * ratio;
    
    // 拉伸量
    CGFloat delta = (newHeight - (endY -  startY)) * textureHeight;
    
    // 判斷是否超出最大值
    if (textureHeight + delta >= 1) {
        delta = 1 - textureHeight;
        newHeight = delta / textureHeight + (endY -  startY);
    }
    
    // 紋理的頂點
    GLKVector3 pointLT = {-textureWidth, textureHeight + delta, 0};  // 左上角
    GLKVector3 pointRT = {textureWidth, textureHeight + delta, 0};  // 右上角
    GLKVector3 pointLB = {-textureWidth, -textureHeight - delta, 0};  // 左下角
    GLKVector3 pointRB = {textureWidth, -textureHeight - delta, 0};  // 右下角
    
    // 中間矩形區域的頂點
    CGFloat startYCoord = MIN(-2 * textureHeight * startY + textureHeight, textureHeight);
    CGFloat endYCoord = MAX(-2 * textureHeight * endY + textureHeight, -textureHeight);
    GLKVector3 centerPointLT = {-textureWidth, startYCoord + delta, 0};  // 左上角
    GLKVector3 centerPointRT = {textureWidth, startYCoord + delta, 0};  // 右上角
    GLKVector3 centerPointLB = {-textureWidth, endYCoord - delta, 0};  // 左下角
    GLKVector3 centerPointRB = {textureWidth, endYCoord - delta, 0};  // 右下角
    
    // 紋理的上面兩個頂點
    self.vertices[0].positionCoord = pointLT;
    self.vertices[0].textureCoord = GLKVector2Make(0, 1);
    self.vertices[1].positionCoord = pointRT;
    self.vertices[1].textureCoord = GLKVector2Make(1, 1);
    // 中間區域的4個頂點
    self.vertices[2].positionCoord = centerPointLT;
    self.vertices[2].textureCoord = GLKVector2Make(0, 1 - startY);
    self.vertices[3].positionCoord = centerPointRT;
    self.vertices[3].textureCoord = GLKVector2Make(1, 1 - startY);
    self.vertices[4].positionCoord = centerPointLB;
    self.vertices[4].textureCoord = GLKVector2Make(0, 1 - endY);
    self.vertices[5].positionCoord = centerPointRB;
    self.vertices[5].textureCoord = GLKVector2Make(1, 1 - endY);
    // 紋理的下面兩個頂點
    self.vertices[6].positionCoord = pointLB;
    self.vertices[6].textureCoord = GLKVector2Make(0, 0);
    self.vertices[7].positionCoord = pointRB;
    self.vertices[7].textureCoord = GLKVector2Make(1, 0);
}

五、渲染到紋理

上面提到:我們需要將每一次的調整結果,都重新生成一個紋理,供下次調整的時候使用

出于對結果分辨率的考慮,我們不會直接讀取當前屏幕渲染結果對應的幀緩存,而是采取「渲染到紋理」的方式,重新生成一個寬度與原圖一致的紋理。

這是為什么呢?

假設我們有一張 1000 X 1000 的圖片,而屏幕上的控件大小是 100 X 100 ,則紋理渲染到屏幕后,渲染結果對應的渲染緩存的尺寸也是 100 X 100 (暫不考慮屏幕密度)。如果我們這時候直接讀取屏幕的渲染結果,最多也只能讀到 100 X 100 的分辨率。

這樣會導致圖片的分辨率下降,所以我們會使用能保持原有分辨率的方式,即「渲染到紋理」。

在這之前,我們都是將紋理直接渲染到屏幕上,關鍵步驟像這樣:

GLuint renderBuffer; // 渲染緩存
GLuint frameBuffer;  // 幀緩存
    
// 綁定渲染緩存要輸出的 layer
glGenRenderbuffers(1, &renderBuffer);
glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer);
[self.context renderbufferStorage:GL_RENDERBUFFER fromDrawable:layer];
    
// 將渲染緩存綁定到幀緩存上
glGenFramebuffers(1, &frameBuffer);
glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer);
glFramebufferRenderbuffer(GL_FRAMEBUFFER,
                          GL_COLOR_ATTACHMENT0,
                          GL_RENDERBUFFER,
                          renderBuffer);

我們生成了一個渲染緩存,并把這個渲染緩存掛載到幀緩存的 GL_COLOR_ATTACHMENT0 顏色緩存上,并通過 context 為當前的渲染緩存綁定了輸出的 layer

其實,如果我們不需要在屏幕上顯示我們的渲染結果,也可以直接將數據渲染到另一個紋理上。更有趣的是,這個渲染后的結果,還可以被當成一個普通的紋理來使用。這也是我們實現重復調整功能的基礎。

具體操作如下:

// 生成幀緩存,掛載渲染緩存
GLuint frameBuffer;
GLuint texture;
    
glGenFramebuffers(1, &frameBuffer);
glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer);
    
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, newTextureWidth, newTextureHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
    
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture, 0);

通過對比我們可以發現,這里我們用 Texture 來替換 Renderbuffer ,并且同樣是掛載到 GL_COLOR_ATTACHMENT0 上,不過這里就不需要另外再綁定 layer 了。

另外,我們需要為新的紋理設置一個尺寸,這個尺寸不再受限于屏幕上控件的尺寸,這也是新紋理可以保持原有分辨率的原因。

這時候,渲染的結果都會被保存在 texture 中,而 texture 也可以被當成普通的紋理來使用。

六、保存結果

當我們調整出滿意的圖片后,需要把它保存下來。這里分為兩步,第一步仍然是上面提到的重新生成紋理,第二步就是把紋理轉化為圖片

第二步主要通過 glReadPixels 方法來實現,它可以從當前的幀緩存中讀取出紋理數據。直接上代碼:

// 返回某個紋理對應的 UIImage,調用前先綁定對應的幀緩存
- (UIImage *)imageFromTextureWithWidth:(int)width height:(int)height {
    int size = width * height * 4;
    GLubyte *buffer = malloc(size);
    glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, buffer);
    CGDataProviderRef provider = CGDataProviderCreateWithData(NULL, buffer, size, NULL);
    int bitsPerComponent = 8;
    int bitsPerPixel = 32;
    int bytesPerRow = 4 * width;
    CGColorSpaceRef colorSpaceRef = CGColorSpaceCreateDeviceRGB();
    CGBitmapInfo bitmapInfo = kCGBitmapByteOrderDefault;
    CGColorRenderingIntent renderingIntent = kCGRenderingIntentDefault;
    CGImageRef imageRef = CGImageCreate(width, height, bitsPerComponent, bitsPerPixel, bytesPerRow, colorSpaceRef, bitmapInfo, provider, NULL, NO, renderingIntent);
    
    // 此時的 imageRef 是上下顛倒的,調用 CG 的方法重新繪制一遍,剛好翻轉過來
    UIGraphicsBeginImageContext(CGSizeMake(width, height));
    CGContextRef context = UIGraphicsGetCurrentContext();
    CGContextDrawImage(context, CGRectMake(0, 0, width, height), imageRef);
    UIImage *image = UIGraphicsGetImageFromCurrentImageContext();
    UIGraphicsEndImageContext();
    
    free(buffer);
    return image;
}

至此,我們已經拿到了 UIImage 對象,可以把它保存到相冊里了。

源碼

請到 GitHub 上查看完整代碼。

參考

獲取更佳的閱讀體驗,請訪問原文地址【Lyman's Blog】使用 iOS OpenGL ES 實現長腿功能

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,030評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,310評論 3 415
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,951評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,796評論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,566評論 6 407
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,055評論 1 322
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,142評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,303評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,799評論 1 333
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,683評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,899評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,409評論 5 358
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,135評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,520評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,757評論 1 282
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,528評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,844評論 2 372