Graphx圖算法【1】三角形TriangleCount

Graphx的數三角形算法TriangleCount用于統計每個頂點所在的三角形個數。

1.1 簡介

對網絡圖中進行三角形個數計數可以根據三角形數量反應網絡中的稠密程度和質量。

1.2 應用場景

(一)用于社區發現

如微博中你關注的人也關注你,大家的關注關系中有很多三角形,說明社區很強很穩定,大家聯系比較緊密;如果一個人只關注了很多人,卻沒有形成三角形,則說明社交群體很小很松散。

(二)衡量社群耦合關系的緊密程度

通過三角形數量來反應社區內部的緊密程度,作為一項參考指標。

1.3 算法思路

計算規則:

如果一條邊的兩個頂點有共同的鄰居,則這三個點構成三角形。

計算步驟:

   1.  為每個節點計算鄰居集合
   2.  對于每條邊,計算兩端節點鄰居集合的交集,將交集中元素個數告知兩端節點,
       該個數即對應著節點關聯的三角形數。
   3.  對每個節點合并三角形數目統計總數,由于三角形中一個頂點關聯兩條邊,所以
       對于同一個三角形而言,一個頂點計算了兩次,故最終結果需要除以2。

1.4 源碼解析


object TriangleCount {

  def run[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED]): Graph[Int, ED] = {
    // Transform the edge data something cheap to shuffle and then canonicalize
    //得到的是一個無自連邊且無重復邊的、邊是從小id指向大id的圖
    val canonicalGraph = graph.mapEdges(e => true).removeSelfEdges().convertToCanonicalEdges()
    // Get the triangle counts
    val counters = runPreCanonicalized(canonicalGraph).vertices
    // Join them bath with the original graph
    graph.outerJoinVertices(counters) { (vid, _, optCounter: Option[Int]) =>
      optCounter.getOrElse(0)
    }
  }


  def runPreCanonicalized[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED]): Graph[Int, ED] = {
    // 構建鄰居集合
    val nbrSets: VertexRDD[VertexSet] =
      // 收集鄰居節點,邊方向為Either,保證點的入邊和出邊連接的鄰居點都會被收集
      graph.collectNeighborIds(EdgeDirection.Either).mapValues { (vid, nbrs) =>
        val set = new VertexSet(nbrs.length)
        var i = 0
        while (i < nbrs.length) {
          // prevent self cycle
          if (nbrs(i) != vid) {
            set.add(nbrs(i))
          }
          i += 1
        }
        set
      }

    // 更新圖中頂點的屬性為鄰居點集合
    val setGraph: Graph[VertexSet, ED] = graph.outerJoinVertices(nbrSets) {
      (vid, _, optSet) => optSet.getOrElse(null)
    }

    def edgeFunc(ctx: EdgeContext[VertexSet, ED, Int]) {
      // 在邊上操作源點和終點的鄰居集合是,遍歷較小的集合,加快遍歷速度
      val (smallSet, largeSet) = if (ctx.srcAttr.size < ctx.dstAttr.size) {
        (ctx.srcAttr, ctx.dstAttr)
      } else {
        (ctx.dstAttr, ctx.srcAttr)
      }
      val iter = smallSet.iterator
      var counter: Int = 0
      while (iter.hasNext) {
        val vid = iter.next()
        if (vid != ctx.srcId && vid != ctx.dstId && largeSet.contains(vid)) {
          counter += 1
        }
      }
      ctx.sendToSrc(counter)
      ctx.sendToDst(counter)
    }

    // 沿著圖中的邊計算兩個頂點的鄰居集合的交集,并為每個頂點合并消息(消息為三角形個數)
    val counters: VertexRDD[Int] = setGraph.aggregateMessages(edgeFunc, _ + _)
    graph.outerJoinVertices(counters) { (_, _, optCounter: Option[Int]) =>
      val dblCount = optCounter.getOrElse(0)
      // 算法為每個三角形計算了兩次,所以結果是偶數
      require(dblCount % 2 == 0, "Triangle count resulted in an invalid number of triangles.")
      dblCount / 2        //注意最后需要除以2,每個三角形被計算了兩遍
    }
  }
}
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,345評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,494評論 3 416
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事?!?“怎么了?”我有些...
    開封第一講書人閱讀 176,283評論 0 374
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,953評論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,714評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,186評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,255評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,410評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,940評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,776評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,976評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,518評論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,210評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,642評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,878評論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,654評論 3 391
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,958評論 2 373

推薦閱讀更多精彩內容