今日頭條爬蟲

最近一直在學習python的scrapy框架。寫了比較多的小例子。工欲善其事必先利其器。今天描述的就是爬取今日頭條的科技板塊新聞。練練這把利器。
教程依賴scrapy,pymongo模塊,可以直接先下載相應的環境依賴。

  • 1.分析今日頭條新聞的API接口
      {
    "has_more": false,
    "message": "success",
    "data": [
      {
        "chinese_tag": "財經",
        "media_avatar_url": "http://p3.pstatp.com/large/1233000741099c9f4a59",
        "is_feed_ad": false,
        "tag_url": "news_finance",
        "title": "【特寫】數字貨幣的信徒們",
        "single_mode": true,
        "middle_mode": true,
        "abstract": "在九月初在中國發文整治ICO后,硅谷的區塊鏈項目創業者林嚇洪把籌集的資金全部還給了中國投資者們。在那次整治中,監管部門宣布,首次代幣發行(Initial Coin Offering,簡稱ICO)屬于非法行為,所有平臺必須返還籌集的資金。",
        "tag": "news_finance",
        "label": [
          "數字貨幣",
          "風投",
          "比特幣",
          "投資",
          "經濟"
        ],
        "behot_time": 1506326903,
        "source_url": "/group/6469550301866803469/",
        "source": "界面新聞",
        "more_mode": false,
        "article_genre": "article",
        "image_url": "http://p1.pstatp.com/list/190x124/317200041ea1cf451f52",
        "has_gallery": false,
        "group_source": 1,
        "comments_count": 10,
        "group_id": "6469550301866803469",
        "media_url": "/c/user/52857496566/"
      },
      {
        "image_url": "http://p3.pstatp.com/list/190x124/31770009f2c887fdb867",
        "single_mode": true,
        "abstract": "早,來看看今天的新聞。小米就校招風波道歉@DoNews【小米就校招風波道歉 對涉事員工通報批評】近日,一名自稱在河南鄭州大學日語專業學習的大學生表示,她與同學在一次校園招聘宣講會上無故被來自小米公司的主管人員諷刺。導致自己和本專業的同學憤然離開。",
        "middle_mode": false,
        "more_mode": true,
        "tag": "news_tech",
        "label": [
          "小米科技",
          "亞馬遜公司",
          "Uber",
          "美國",
          "樂視"
        ],
        "tag_url": "news_tech",
        "title": "小米就校招風波道歉;ofo正尋求新一輪融資",
        "chinese_tag": "科技",
        "source": "虎嗅APP",
        "group_source": 1,
        "has_gallery": false,
        "media_url": "/c/user/3358265611/",
        "media_avatar_url": "http://p2.pstatp.com/large/18a50010126f235bf938",
        "image_list": [
          {
            "url": "http://p3.pstatp.com/list/31770009f2c887fdb867"
          },
          {
            "url": "http://p1.pstatp.com/list/317b00061c410d6d0352"
          },
          {
            "url": "http://p3.pstatp.com/list/3172000337e0332b337f"
          }
        ],
        "source_url": "/group/6469472579270672654/",
        "article_genre": "article",
        "is_feed_ad": false,
        "behot_time": 1506326303,
        "comments_count": 114,
        "group_id": "6469472579270672654"
      },
      {
        "image_url": "http://p3.pstatp.com/list/190x124/3c64000074857b07c81d",
        "single_mode": true,
        "abstract": "藍燕,經常關注香港電影的人應該不陌生,在2011年靠著香港三級影片《3D肉蒲團之極樂寶鑒》走紅,并逐漸出現人們的視線中。被稱為新一代的“艷星”??勺呒t后的她并沒有獲得很好的資源,所接拍的影片大多數是一些不知名的配角。",
        "middle_mode": false,
        "more_mode": true,
        "tag": "news_entertainment",
        "label": [
          "藍燕 ",
          "肉蒲團",
          "投資",
          "娛樂"
        ],
        "tag_url": "news_entertainment",
        "title": "艷星藍燕美照曝光 靠著《3D肉蒲團》走紅",
        "chinese_tag": "娛樂",
        "source": "陪你樂不停",
        "group_source": 2,
        "has_gallery": false,
        "media_url": "/c/user/61497461135/",
        "media_avatar_url": "http://p3.pstatp.com/large/382f000f5dd459d0eb74",
        "image_list": [
          {
            "url": "http://p3.pstatp.com/list/3c64000074857b07c81d"
          },
          {
            "url": "http://p3.pstatp.com/list/3c6000022fcec3f4ca48"
          },
          {
            "url": "http://p3.pstatp.com/list/3c60000230155491a84d"
          }
        ],
        "source_url": "/group/6469578595697164813/",
        "article_genre": "article",
        "is_feed_ad": false,
        "behot_time": 1506325703,
        "comments_count": 2,
        "group_id": "6469578595697164813"
      },
      {
        "log_extra": "{\"ad_price\":\"Wci5d__iJRJZyLl3_-IlEuQYjwGdUeJEIl99Ew\",\"convert_id\":0,\"external_action\":0,\"req_id\":\"201709251608231720180471641841E3\",\"rit\":1}",
        "image_url": "http://p3.pstatp.com/large/26c00009898dbc9c5a52",
        "read_count": 12196,
        "ban_comment": 1,
        "single_mode": true,
        "abstract": "",
        "image_list": [],
        "has_video": false,
        "article_type": 1,
        "tag": "ad",
        "display_info": "股市迎來重磅利好消息,這些股或將上漲翻倍,微信領取",
        "has_m3u8_video": 0,
        "label": "廣告",
        "user_verified": 0,
        "aggr_type": 1,
        "expire_seconds": 314754930,
        "cell_type": 0,
        "article_sub_type": 0,
        "group_flags": 4096,
        "bury_count": 0,
        "title": "股市迎來重磅利好消息,這些股或將上漲翻倍,微信領取",
        "ignore_web_transform": 1,
        "source_icon_style": 3,
        "tip": 0,
        "hot": 0,
        "share_url": "http://m.toutiao.com/group/6465452273144168717/?iid=0&app=news_article",
        "has_mp4_video": 0,
        "source": "聯訊證券",
        "comment_count": 0,
        "article_url": "http://cq3.ilyae.cn/toutiao2/index.html",
        "filter_words": [
          {
            "id": "1:74",
            "name": "股票",
            "is_selected": false
          },
          {
            "id": "1:6",
            "name": "金融保險",
            "is_selected": false
          },
          {
            "id": "2:0",
            "name": "來源:聯訊證券",
            "is_selected": false
          },
          {
            "id": "4:2",
            "name": "看過了",
            "is_selected": false
          }
        ],
        "has_gallery": false,
        "publish_time": 1505355414,
        "ad_id": 69048936405,
        "action_list": [
          {
            "action": 1,
            "extra": {},
            "desc": ""
          },
          {
            "action": 3,
            "extra": {},
            "desc": ""
          },
          {
            "action": 7,
            "extra": {},
            "desc": ""
          },
          {
            "action": 9,
            "extra": {},
            "desc": ""
          }
        ],
        "has_image": false,
        "cell_layout_style": 1,
        "tag_id": 6465452273144168717,
        "source_url": "http://cq3.ilyae.cn/toutiao2/index.html",
        "video_style": 0,
        "verified_content": "",
        "is_feed_ad": true,
        "large_image_list": [],
        "item_id": 6465452273144168717,
        "natant_level": 2,
        "tag_url": "search/?keyword=None",
        "article_genre": "ad",
        "level": 0,
        "cell_flag": 10,
        "source_open_url": "sslocal://search?from=channel_source&keyword=%E8%81%94%E8%AE%AF%E8%AF%81%E5%88%B8",
        "display_url": "http://cq3.ilyae.cn/toutiao2/index.html",
        "digg_count": 0,
        "behot_time": 1506325103,
        "article_alt_url": "http://m.toutiao.com/group/article/6465452273144168717/",
        "cursor": 1506325103999,
        "url": "http://cq3.ilyae.cn/toutiao2/index.html",
        "preload_web": 0,
        "ad_label": "廣告",
        "user_repin": 0,
        "label_style": 3,
        "item_version": 0,
        "group_id": "6465452273144168717",
        "middle_image": {
          "url": "http://p3.pstatp.com/large/26c00009898dbc9c5a52",
          "width": 456,
          "url_list": [
            {
              "url": "http://p3.pstatp.com/large/26c00009898dbc9c5a52"
            },
            {
              "url": "http://pb9.pstatp.com/large/26c00009898dbc9c5a52"
            },
            {
              "url": "http://pb1.pstatp.com/large/26c00009898dbc9c5a52"
            }
          ],
          "uri": "large/26c00009898dbc9c5a52",
          "height": 256
        }
      },
      {
        "image_url": "http://p3.pstatp.com/list/190x124/3b050002710aff2b3422",
        "single_mode": true,
        "abstract": "如今2017年微信的月活躍用戶達9億,微信成了中國最大用戶群體的手機APP,它集通訊、娛樂、支付等于一體。很多朋友習慣每天打開微信收發信息、查看朋友圈動態。",
        "middle_mode": false,
        "more_mode": true,
        "tag": "news_tech",
        "label": [
          "移動互聯網",
          "微信",
          "澤西島",
          "美女",
          "歐洲"
        ],
        "tag_url": "news_tech",
        "title": "為什么微信中那么多美女來自安道爾或澤西島?這是一種暗語嗎",
        "chinese_tag": "科技",
        "source": "獅子夜光杯",
        "group_source": 2,
        "has_gallery": false,
        "media_url": "/c/user/53397416061/",
        "media_avatar_url": "http://p3.pstatp.com/large/12330013573aaa4c18b1",
        "image_list": [
          {
            "url": "http://p3.pstatp.com/list/3b050002710aff2b3422"
          },
          {
            "url": "http://p3.pstatp.com/list/3b05000271096e15298e"
          },
          {
            "url": "http://p9.pstatp.com/list/3b080000bdf469bf7330"
          }
        ],
        "source_url": "/group/6467319367565574670/",
        "article_genre": "article",
        "is_feed_ad": false,
        "behot_time": 1506324503,
        "comments_count": 46,
        "group_id": "6467319367565574670"
      },
      {
        "image_url": "http://p3.pstatp.com/list/190x124/3b0f0003c132eb485453",
        "single_mode": true,
        "abstract": "最近幾周,各大互聯網科技公司都開始秋季招聘了這些是正經的公司的招聘筆試題:關于c++的inline關鍵字,以下說法正確的是()對N個數進行排序,在各自最優條件下以下算法復雜度最低的是()為百度設計一款新產品,可以結合百度現有的優勢和資源,專注解決大學生用戶的某個需求痛點,請給出主",
        "middle_mode": false,
        "more_mode": true,
        "tag": "news_design",
        "label": [
          "電子商務",
          "京東",
          "面試",
          "劉強東",
          "計算復雜性理論"
        ],
        "tag_url": "search/?keyword=%E8%AE%BE%E8%AE%A1",
        "title": "京東校招筆試題“如何用0.01元買到一瓶可樂”?竟被蘇寧秀了一臉",
        "chinese_tag": "設計",
        "source": "小禾科技",
        "group_source": 2,
        "has_gallery": false,
        "media_url": "/c/user/59954335187/",
        "media_avatar_url": "http://p9.pstatp.com/large/39b10003f6cddd5128fa",
        "image_list": [
          {
            "url": "http://p3.pstatp.com/list/3b0f0003c132eb485453"
          },
          {
            "url": "http://p3.pstatp.com/list/3b110000ab4c79a56483"
          },
          {
            "url": "http://p9.pstatp.com/list/3b1600007cde1cf9bdd0"
          }
        ],
        "source_url": "/group/6468140283245625870/",
        "article_genre": "article",
        "is_feed_ad": false,
        "behot_time": 1506323903,
        "comments_count": 87,
        "group_id": "6468140283245625870"
      },
      {
        "chinese_tag": "科技",
        "media_avatar_url": "http://p9.pstatp.com/large/2c6600049c7144303824",
        "is_feed_ad": false,
        "tag_url": "news_tech",
        "title": "為什么家里的WIFI時快時慢?竟然是因為……",
        "single_mode": true,
        "middle_mode": false,
        "abstract": "現在還是個信息的時代,不僅手機、電腦非常普遍,而且現在的人們都喜歡用無線網絡之WiFi,因為這樣更加便捷。在家使用手機的時候,不用打開手機的數據流量,只要使用WiFi就可以了,無限的流量使用,太方便了。但是很多用戶都會有這樣的體驗,WiFi速度時快時慢的,很是煩惱。",
        "group_source": 2,
        "image_list": [
          {
            "url": "http://p3.pstatp.com/list/3b1600009ba8a7500c7e"
          },
          {
            "url": "http://p1.pstatp.com/list/3b1600009bb32db8a78a"
          },
          {
            "url": "http://p3.pstatp.com/list/3b120000c5dac40ae0fe"
          }
        ],
        "label": [
          "Wi-Fi",
          "科技"
        ],
        "behot_time": 1506323303,
        "source_url": "/group/6468146583144759822/",
        "source": "水電小知識",
        "more_mode": true,
        "article_genre": "article",
        "image_url": "http://p3.pstatp.com/list/190x124/3b1600009ba8a7500c7e",
        "tag": "news_tech",
        "has_gallery": false,
        "group_id": "6468146583144759822",
        "media_url": "/c/user/61795844218/"
      }
    ],
    "next": {
      "max_behot_time": 1506323303
      }
    }
    
  • 2.分析請求的參數以及請求循環性:
    • 科技新聞的數據接口使用的是GET請求,傳遞下面幾個查詢參數:
      category:news_tech
      utm_source:toutiao
      widen:1
      max_behot_time:0
      max_behot_time_tmp:0
      tadrequire:true
      as:A155493CA8EBB0F
      cp:59C84BEB601F7E1
    
    • 滑動網頁,再次發出異步請求,觀察請求參數,可以發現只有幾個查詢參數是改變的。從上一次獲取的數據有個字段next->max_behot_time剛好是max_behot_time和max_behot_time_tmp的值。至于as與及cp參數對GET請求影響不大,可以直接取某一次分析的參數值就是max_behot_time參數,作者認為是當前的時間戳,現在數據已經展示給我們,我們就沒必要去猜測,有時候抓包分析就是一種猜測API參數意義的過程,大家可以去驗證:
      max_behot_time:1506326351
      max_behot_time_tmp:1506326351
      as:A115996C383BD3C
      cp:59C82BAD839CBE1
    
  • 3.構造請請求地址:
    • scrapy項目的目錄結構如下所示:
      結構圖
    • settings.py源碼如下:
  # -*- coding: utf-8 -*-
# Scrapy settings for todayNews project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     http://doc.scrapy.org/en/latest/topics/settings.html
#     http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#     http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html

BOT_NAME = 'todayNews'

SPIDER_MODULES = ['todayNews.spiders']
NEWSPIDER_MODULE = 'todayNews.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'todayNews (+http://www.yourdomain.com)'

# Obey robots.txt rules
ROBOTSTXT_OBEY = False

# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32

# Configure a delay for requests for the same website (default: 0)
# See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)
#COOKIES_ENABLED = False

# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False

# Override the default request headers:
DEFAULT_REQUEST_HEADERS = {
    'Accept':'text/javascript, text/html, application/xml, text/xml, */*',
    'Accept-Encoding':'gzip, deflate, sdch, br',
    'Accept-Language':'zh-CN,zh;q=0.8',
    'Cache-Control':'no-cache',
    'Connection':'keep-alive',
    'Content-Type':'application/x-www-form-urlencoded',
    'Cookie':'uuid="w:3db0708ea2c549fab1a5371c56f16176"; UM_distinctid=15c7147fecd8d-0a4277451-4349052c-100200-15c7147fecf6f; csrftoken=af9a5a0d4cd30794e6c04511ca9f31eb; _ga=GA1.2.312467779.1496549163; __guid=32687416.738502311042654200.1505560389379.9048; tt_track_id=c7baa73a99ec9787ead7a2f6b01ff56b; _ba=BA0.2-20170923-51d9e-ErxmsyZIIoxNOzZgf6Us; tt_webid=6427627096743282178; WEATHER_CITY=%E5%8C%97%E4%BA%AC; CNZZDATA1259612802=610804389-1496543540-null%7C1506261975; __tasessionId=0vta7k1uc1506263833592; tt_webid=6427627096743282178',
    'Host':'www.toutiao.com',
    'Pragma':'no-cache',
    'Referer':'https://www.toutiao.com/ch/news_tech/',
    'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36',
    'X-Requested-With':'XMLHttpRequest'
}

# Enable or disable spider middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#    'todayNews.middlewares.TodaynewsSpiderMiddleware': 543,
#}

# Enable or disable downloader middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
#    'todayNews.middlewares.MyCustomDownloaderMiddleware': 543,
#}

# Enable or disable extensions
# See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#    'scrapy.extensions.telnet.TelnetConsole': None,
#}

# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {  
   'todayNews.pipelines.MongoPipeline': 300,
}

# Enable and configure the AutoThrottle extension (disabled by default)
# See http://doc.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
DOWNLOAD_DELAY = 1   
MONGO_URI="localhost"
MONGO_DATABASE="toutiao"
MONGO_USER="username"
MONGO_PASS="password"
  • pipelines源碼如下:
  # -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html


import pymongo

class MongoPipeline(object):
  collection_name="science"
  def __init__(self,mongo_uri,mongo_db,mongo_user,mongo_pass):
      self.mongo_uri=mongo_uri
      self.mongo_db=mongo_db
      self.mongo_user=mongo_user
      self.mongo_pass=mongo_pass
  @classmethod
  def from_crawler(cls,crawler):
      return cls(mongo_uri=crawler.settings.get('MONGO_URI'),mongo_db=crawler.settings.get('MONGO_DATABASE'),mongo_user=crawler.settings.get("MONGO_USER"),mongo_pass=crawler.settings.get("MONGO_PASS"))
  def open_spider(self, spider):
      self.client = pymongo.MongoClient(self.mongo_uri)
      self.db = self.client[self.mongo_db]
      self.db.authenticate(self.mongo_user,self.mongo_pass)
      
  def close_spider(self, spider):
      self.client.close()

  def process_item(self, item, spider):
      # self.db[self.collection_name].update({'url_token': item['url_token']}, {'$set': dict(item)}, True)
      # return item
      self.db[self.collection_name].insert(dict(item))
      return item
  • toutiao.py源碼如下:
  # -*- coding: utf-8 -*-
from scrapy import Spider,Request
import json
import logging
from todayNews.items import TodaynewsItem
class ToutiaoSpider(Spider):
  name = "toutiao"
  allowed_domains = ["www.toutiao.com"]
  start_urls = ['https://www.toutiao.com/api/pc/feed/?min_behot_time=0&category=__all__&utm_source=toutiao&widen=1&tadrequire=true&as=A1D5394CB72C38F&cp=59C71C03883F0E1']
  url='https://www.toutiao.com/api/pc/feed/?category=news_tech&utm_source=toutiao&widen=1&max_behot_time={behot_time}&max_behot_time_tmp={behot_time_tmp}&tadrequire=true&as=A165E92C97CC487&cp=59C74CC4E8F7BE1'
  def parse(self, response):
      jsonData=json.loads(response.body.decode("utf-8"))
      MainData=jsonData["data"]
      nextTime=jsonData["next"]["max_behot_time"]
      if jsonData["message"]=='success':
          for rowData in MainData:
              yield rowData
          yield Request(url=self.url.format(behot_time=nextTime,behot_time_tmp=nextTime),callback=self.parse)
      else:
          logging.info("The Data is null")
      
  • items定義數據結構化的提取,因為今日頭條返回的json格式并不是規范(可以查閱上面展示的數據),所以并沒有定義提取的item值。而是直接把items傳遞到pipeline梳理保存在MongoDB上面。
  • 4.啟動爬蟲程序,并查看爬取到數據


    保存的數據
完工
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,702評論 6 534
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,615評論 3 419
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,606評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,044評論 1 314
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,826評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,227評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,307評論 3 442
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,447評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,992評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,807評論 3 355
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,001評論 1 370
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,550評論 5 361
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,243評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,667評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,930評論 1 287
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,709評論 3 393
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,996評論 2 374

推薦閱讀更多精彩內容