概述
Linux系統當可用內存較低的時候oom killer機制會根據一定的規則去殺掉一些進程來釋放內存,而Android系統的LowMemoryKiller機制就是以此功能為基礎做了一些調整。Android系統中的APP在使用完成之后并不會馬上被殺掉,而是駐留在內存中,當下一次在此進入此應用的時候可以省去進程創建的過程,加快啟動速度。LowMemoryKiller機制會在內存資源緊張的時候,殺掉一些進程來回收內存。
整體架構
LowMemoryKiller機制分為三個部分
- AMS部分的ProcessList
- Native進程lmkd
- 內核中的LowMemoryKiller部分
Framework中的ProcessList和Native的lmkd進程通過Socket進行進程間通信,而lmkd和內核中的LowMemoryKiller通過writeFileString向文件節點寫內容方法進行通信。
Framework層通過一定的規則調整進程的adj的值和內存空間閥值,然后通過socket發送給lmkd進程,lmkd兩種處理方式, 一種將閥值寫入文件節點發送給內核的LowMemoryKiller,由內核進行殺進程處理,另一種是lmkd通過cgroup監控內存使用情況,自行計算殺掉進程。
lmkd的啟動和初始化
lmkd是一個native進程,由init進程啟動,定義在/system/core/lmkd/lmkd.rc中
service lmkd /system/bin/lmkd
class core
group root readproc
critical
socket lmkd seqpacket 0660 system system
writepid /dev/cpuset/system-background/tasks
在lmkd.rc中,啟動了lmkd進程,并創建了一個名為lmkd的socket的描述符,用于socket進程間通信。lmkd啟動后首先執行main方法。
int main(int argc __unused, char **argv __unused) {
struct sched_param param = {
.sched_priority = 1,
};
sched_setscheduler(0, SCHED_FIFO, ¶m);
if (!init())
mainloop();
}
main方法首先設置了當前進程的調度規則,然后執行了init方法和mainLoop方法。
static int init(void) {
struct epoll_event epev;
int i;
int ret;
//獲取當前系統的頁大小,單位kb
page_k = sysconf(_SC_PAGESIZE);
if (page_k == -1)
page_k = PAGE_SIZE;
page_k /= 1024;
// 創建一個epollfd描述符
epollfd = epoll_create(MAX_EPOLL_EVENTS);
if (epollfd == -1) {
ALOGE("epoll_create failed (errno=%d)", errno);
return -1;
}
// mark data connections as not connected
for (int i = 0; i < MAX_DATA_CONN; i++) {
data_sock[i].sock = -1;
}
// 獲取init.rc中創建的lmkd socket描述符
ctrl_sock.sock = android_get_control_socket("lmkd");
if (ctrl_sock.sock < 0) {
ALOGE("get lmkd control socket failed");
return -1;
}
// 監聽socket的連接,即ProcessList的Socket連接
ret = listen(ctrl_sock.sock, MAX_DATA_CONN);
if (ret < 0) {
ALOGE("lmkd control socket listen failed (errno=%d)", errno);
return -1;
}
// Epoll 設置監聽socket中的可讀事件,當有可讀事件的時候回調ctrl_connect_hander方法
//處理socket連接過程
epev.events = EPOLLIN;
ctrl_sock.handler_info.handler = ctrl_connect_handler;
epev.data.ptr = (void *)&(ctrl_sock.handler_info);
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, ctrl_sock.sock, &epev) == -1) {
ALOGE("epoll_ctl for lmkd control socket failed (errno=%d)", errno);
return -1;
}
maxevents++;
//檢測內核是否支持lowMemoryKiller機制
has_inkernel_module = !access(INKERNEL_MINFREE_PATH, W_OK);
use_inkernel_interface = has_inkernel_module;
//如果內核不支持LowMemoryKiller,則調用init_mp_common初始化,在lmkd中實現進程查殺過程
if (use_inkernel_interface) {
ALOGI("Using in-kernel low memory killer interface");
} else {
if (!init_mp_common(VMPRESS_LEVEL_LOW) ||
!init_mp_common(VMPRESS_LEVEL_MEDIUM) ||
!init_mp_common(VMPRESS_LEVEL_CRITICAL)) {
ALOGE("Kernel does not support memory pressure events or in-kernel low memory killer");
return -1;
}
}
//初始化lmkd中的進程列表
for (i = 0; i <= ADJTOSLOT(OOM_SCORE_ADJ_MAX); i++) {
procadjslot_list[i].next = &procadjslot_list[i];
procadjslot_list[i].prev = &procadjslot_list[i];
}
return 0;
}
lmkd的init方法中做的工作
- 獲取lmkd的socket描述符
- 創建epoll來監聽socket的連接,如果有連接則回調ctrl_connect_handler方法來處理。
- 檢測是否有minfree接口,即內核是否支持lowmemorykiller,如果內核不支持則調用init_mp_common初始化,在lmkd中實現進程查殺。
為了防止剩余內存過低,Android在內核空間有lowmemorykiller(簡稱LMK),LMK是通過注冊shrinker來觸發低內存回收的,這個機制并不太優雅,可能會拖慢Shrinkers內存掃描速度,已從內核4.12中移除,后續會采用用戶空間的LMKD + memory cgroups機制
我們先分析內核實現的LowMemoryKiller進程查殺機制, 然后再分析lmkd實現的機制。兩者最終的結果都是在內存緊張的時候殺死一些進程來釋放內存, 但是實現機制去不太一樣。
static void mainloop(void) {
struct event_handler_info* handler_info;
struct epoll_event *evt;
//循環等待epoll事件的上報
while (1) {
struct epoll_event events[maxevents];
int nevents;
int i;
nevents = epoll_wait(epollfd, events, maxevents, -1);
if (nevents == -1) {
if (errno == EINTR)
continue;
ALOGE("epoll_wait failed (errno=%d)", errno);
continue;
}
//獲取到對應的epoll事件,分發給對應的handler處理
for (i = 0, evt = &events[0]; i < nevents; ++i, evt++) {
if (evt->events & EPOLLERR)
ALOGD("EPOLLERR on event #%d", i);
if (evt->events & EPOLLHUP) {
/* This case was handled in the first pass */
continue;
}
if (evt->data.ptr) {
handler_info = (struct event_handler_info*)evt->data.ptr;
handler_info->handler(handler_info->data, evt->events);
}
}
}
}
init執行初始化完成之后, 進入mainloop方法,循環等待epoll事件的上報,init的時候epoll監聽的socket連接, 當有socket連接的時候就會調用ctrl_connect_handler方法。
static void ctrl_connect_handler(int data __unused, uint32_t events __unused) {
struct epoll_event epev;
int free_dscock_idx = get_free_dsock();
if (free_dscock_idx < 0) {
/*
* Number of data connections exceeded max supported. This should not
* happen but if it does we drop all existing connections and accept
* the new one. This prevents inactive connections from monopolizing
* data socket and if we drop ActivityManager connection it will
* immediately reconnect.
*/
for (int i = 0; i < MAX_DATA_CONN; i++) {
ctrl_data_close(i);
}
free_dscock_idx = 0;
}
//接受framework的socket連接
data_sock[free_dscock_idx].sock = accept(ctrl_sock.sock, NULL, NULL);
if (data_sock[free_dscock_idx].sock < 0) {
ALOGE("lmkd control socket accept failed; errno=%d", errno);
return;
}
ALOGI("lmkd data connection established");
//監聽連接的socket通信,當socket有消息的時候會掉ctrl_data_handler方法。
data_sock[free_dscock_idx].handler_info.data = free_dscock_idx;
data_sock[free_dscock_idx].handler_info.handler = ctrl_data_handler;
epev.events = EPOLLIN;
epev.data.ptr = (void *)&(data_sock[free_dscock_idx].handler_info);
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, data_sock[free_dscock_idx].sock, &epev) == -1) {
ALOGE("epoll_ctl for data connection socket failed; errno=%d", errno);
ctrl_data_close(free_dscock_idx);
return;
}
maxevents++;
}
監聽到socket連接, 我們知道此時連接lmkd的socket客戶端就是framework,當有連接到來的時候accept方法返回連接的socketFD, 然后將連接的socketFD同樣加入epoll中, 當socketFD中有可讀消息,即framework給lmkd發送消息的時候,epoll喚醒然后會掉ctrl_data_handler方法來處理。
Framework和lmkd通信
Framework和lmkd進程通過socket來進行進程間通信,在lmkd初始化的時候,通過監聽socket描述符lmkd來等待Framework發送的消息。
Framework向lmkd發送命令相關的方法有三個。
- AMS.updateConfiguration
更新配置,手機屏幕的尺寸和內存大小不一樣,對應的最小內存閥值和adj值也不一樣, 最終調用ProcessList的updateOomLevel方法向lmkd發送調整命令- AMS.applyOomAdjLocked AMS根據一定的規則調整進程的adj值,最用通過ProcessList的setOomAdj方法發送給lmkd調整命令
- AMS.cleanUpApplicationRecordLocked & AMS.handleAppDiedLocked 進程死亡后,調用ProcessList的remove方法移除進程
上面的三種情況Framework最終是通過socket向lmkd發送了三種消息。
// LMK_TARGET <minfree> <minkillprio> ... (up to 6 pairs)
// LMK_PROCPRIO <pid> <uid> <prio>
// LMK_PROCREMOVE <pid>
//調整minfree和adj的值
static final byte LMK_TARGET = 0;
//設置對應進程的adj值
static final byte LMK_PROCPRIO = 1;
//移除對應進程
static final byte LMK_PROCREMOVE = 2;
lmkd接收命令處理邏輯
static void ctrl_command_handler(int dsock_idx) {
LMKD_CTRL_PACKET packet;
int len;
enum lmk_cmd cmd;
int nargs;
int targets;
//從socket中讀取數據
len = ctrl_data_read(dsock_idx, (char *)packet, CTRL_PACKET_MAX_SIZE);
if (len <= 0)
return;
if (len < (int)sizeof(int)) {
ALOGE("Wrong control socket read length len=%d", len);
return;
}
//解析Socket的命令和參數
cmd = lmkd_pack_get_cmd(packet);
nargs = len / sizeof(int) - 1;
if (nargs < 0)
goto wronglen;
switch(cmd) {
case LMK_TARGET:
targets = nargs / 2;
if (nargs & 0x1 || targets > (int)ARRAY_SIZE(lowmem_adj))
goto wronglen;
//調整minfree和adj閥值
cmd_target(targets, packet);
break;
case LMK_PROCPRIO:
if (nargs != 3)
goto wronglen;
//設置對應進程的adj值
cmd_procprio(packet);
break;
case LMK_PROCREMOVE:
if (nargs != 1)
goto wronglen;
//移除對應的進程
cmd_procremove(packet);
break;
default:
ALOGE("Received unknown command code %d", cmd);
return;
}
return;
lmkd通過epoll監聽socket中是否有數據, 當接受的framework發送的socket命令之后,調用ctrl_cmmand_handler方法處理,顯示解析socket中的命令和參數,根據對于的命令來調用不同的方法處理。
- cmd_target 調整最小內存閥值和adj值
- cmd_procprio 調整進程的adj值
- cmd_procremove 移除對應的進程
對于進程查殺有兩種實現方式,一種是內核的LMK,通過shrinker來觸發低內存回收, 另一種是lmkd通過cgroup監控內存使用情況,自行計算殺掉進程。兩種實現不太一樣,需要逐個分析。
內核LMK的實現
cmd_target
static void cmd_target(int ntargets, LMKD_CTRL_PACKET packet) {
int i;
struct lmk_target target;
lowmem_targets_size = ntargets;
//使用kernel中的LMK
if (has_inkernel_module) {
char minfreestr[128];
char killpriostr[128];
minfreestr[0] = '\0';
killpriostr[0] = '\0';
//將從framework收到的內存閥值和adj值封裝成字符串,以,分隔
//如 18432,23040,27648,32256,55296,80640
//0,100,200,300,900,906
for (i = 0; i < lowmem_targets_size; i++) {
char val[40];
if (i) {
strlcat(minfreestr, ",", sizeof(minfreestr));
strlcat(killpriostr, ",", sizeof(killpriostr));
}
snprintf(val, sizeof(val), "%d", use_inkernel_interface ? lowmem_minfree[i] : 0);
strlcat(minfreestr, val, sizeof(minfreestr));
snprintf(val, sizeof(val), "%d", use_inkernel_interface ? lowmem_adj[i] : 0);
strlcat(killpriostr, val, sizeof(killpriostr));
}
// 將字符串分別寫入 /sys/module/lowmemorykiller/parameters/minfree
// 和/sys/module/lowmemorykiller/parameters/adj
writefilestring(INKERNEL_MINFREE_PATH, minfreestr);
writefilestring(INKERNEL_ADJ_PATH, killpriostr);
}
}
設置內存閥值和adj的值就是將從framework收到的數據封裝成字符串,通過writefilestring寫入到兩個文件節點,以供內核LMK使用。
/sys/module/lowmemorykiller/parameters/minfree : 內存級別限額
/sys/module/lowmemorykiller/parameters/adj :內存級別限額對應的要殺掉的進程的adj值.
cmd_procprio
static void cmd_procprio(LMKD_CTRL_PACKET packet) {
struct proc *procp;
char path[80];
char val[20];
int soft_limit_mult;
struct lmk_procprio params;
//解析進程adj相關的參數
lmkd_pack_get_procprio(packet, ¶ms);
if (params.oomadj < OOM_SCORE_ADJ_MIN ||
params.oomadj > OOM_SCORE_ADJ_MAX) {
ALOGE("Invalid PROCPRIO oomadj argument %d", params.oomadj);
return;
}
//將進程優先級寫入到/proc/進程id/oom_score_adj文件中
snprintf(path, sizeof(path), "/proc/%d/oom_score_adj", params.pid);
snprintf(val, sizeof(val), "%d", params.oomadj);
writefilestring(path, val);
if (use_inkernel_interface)
return;
}
由于使用內核LMK, 所以調整進程優先級直接將優先級寫入對應進程的oom_adj_score文件即可。
cmd_procremove
static void cmd_procremove(LMKD_CTRL_PACKET packet) {
struct lmk_procremove params;
//內核LMK,移除進程什么都不需要做,全部有內核處理
if (use_inkernel_interface)
return;
}
移除進程的時候不需要做任何操作
內核LowMemoryKiller的實現原理
在linux中,有一個名為kswapd的內核線程,當linux回收存放分頁的時候,kswapd線程將會遍歷一張shrinker鏈表,并執行回調,或者某個app啟動,發現可用內存不足時,則內核會阻塞請求分配內存的進程分配內存的過程,并在該進程中去執行lowmemorykiller來釋放內存。雖然之前沒有接觸過,大體的理解就是向系統注冊了這個shrinker回調函數之后,當系統空閑內存頁面不足時會調用這個回調函數。 struct shrinker的定義在linux/kernel/include/linux/shrinker.h中:
內核LowMemoryKiller shrinker的注冊過程如下:
static struct shrinker lowmem_shrinker = {
.scan_objects = lowmem_scan,
.count_objects = lowmem_count,
.seeks = DEFAULT_SEEKS * 16
};
static int __init lowmem_init(void)
{
register_shrinker(&lowmem_shrinker);
return 0;
}
static void __exit lowmem_exit(void)
{
unregister_shrinker(&lowmem_shrinker);
}
注冊完成之后, 在內存緊張的時候就會回調shrinker, 其中最主要的是lowmem_scan方法。具體實現如下:
static unsigned long lowmem_scan(struct shrinker *s, struct shrink_control *sc)
{
struct task_struct *tsk;
//選中要殺掉進程的task_struct
struct task_struct *selected = NULL;
unsigned long rem = 0;
int tasksize;
int I;
//min_score_adj 初始值=1000
short min_score_adj = OOM_SCORE_ADJ_MAX + 1;
int minfree = 0;
//要殺掉進程占用內存的大小
int selected_tasksize = 0;
//要殺掉進程的adj值
short selected_oom_score_adj;
//獲取并計算剩余內存的大小
int array_size = ARRAY_SIZE(lowmem_adj);
int other_free = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
int other_file = global_page_state(NR_FILE_PAGES) -
global_page_state(NR_SHMEM) -
total_swapcache_pages();
//從minfree中和adj節點中獲取的數據初始化內存限額和adj
if (lowmem_adj_size < array_size)
array_size = lowmem_adj_size;
if (lowmem_minfree_size < array_size)
array_size = lowmem_minfree_size;
// 內存限額從小到大遍歷, 找到剩余內存屬于哪一個閥值,并獲取它對應的adj值
for (i = 0; i < array_size; i++) {
minfree = lowmem_minfree[i];
if (other_free < minfree && other_file < minfree) {
min_score_adj = lowmem_adj[i];
break;
}
}
lowmem_print(3, "lowmem_scan %lu, %x, ofree %d %d, ma %hd\n",
sc->nr_to_scan, sc->gfp_mask, other_free,
other_file, min_score_adj);
//如果adj值為初始值1000,則內存情況良好無需殺掉進程
if (min_score_adj == OOM_SCORE_ADJ_MAX + 1) {
lowmem_print(5, "lowmem_scan %lu, %x, return 0\n",
sc->nr_to_scan, sc->gfp_mask);
return 0;
}
selected_oom_score_adj = min_score_adj;
rcu_read_lock();
//遍歷進程列表
for_each_process(tsk) {
struct task_struct *p;
short oom_score_adj;
if (tsk->flags & PF_KTHREAD)
continue;
p = find_lock_task_mm(tsk);
if (!p)
continue;
if (test_tsk_thread_flag(p, TIF_MEMDIE) &&
time_before_eq(jiffies, lowmem_deathpending_timeout)) {
task_unlock(p);
rcu_read_unlock();
return 0;
}
//獲取進程的adj值,如果進程的adj值小于目標adj值,則繼續尋找
oom_score_adj = p->signal->oom_score_adj;
if (oom_score_adj < min_score_adj) {
task_unlock(p);
continue;
}
//找到adj值大于目標adj的進程后,首先計算該進程占用的內存大小,
//如果兩個進程的adj一般大,則找占用內存大的一個進程
tasksize = get_mm_rss(p->mm);
task_unlock(p);
if (tasksize <= 0)
continue;
if (selected) {
if (oom_score_adj < selected_oom_score_adj)
continue;
if (oom_score_adj == selected_oom_score_adj &&
tasksize <= selected_tasksize)
continue;
}
selected = p;
selected_tasksize = tasksize;
selected_oom_score_adj = oom_score_adj;
lowmem_print(2, "select '%s' (%d), adj %hd, size %d, to kill\n",
p->comm, p->pid, oom_score_adj, tasksize);
}
//將找到的進程發送SIGKILL殺掉該進程從而釋放內存
if (selected) {
long cache_size = other_file * (long)(PAGE_SIZE / 1024);
long cache_limit = minfree * (long)(PAGE_SIZE / 1024);
long free = other_free * (long)(PAGE_SIZE / 1024);
trace_lowmemory_kill(selected, cache_size, cache_limit, free);
lowmem_print(1, "Killing '%s' (%d), adj %hd,\n" \
" to free %ldkB on behalf of '%s' (%d) because\n" \
" cache %ldkB is below limit %ldkB for oom_score_adj %hd\n" \
" Free memory is %ldkB above reserved\n",
selected->comm, selected->pid,
selected_oom_score_adj,
selected_tasksize * (long)(PAGE_SIZE / 1024),
current->comm, current->pid,
cache_size, cache_limit,
min_score_adj,
free);
lowmem_deathpending_timeout = jiffies + HZ;
set_tsk_thread_flag(selected, TIF_MEMDIE);
send_sig(SIGKILL, selected, 0);
rem += selected_tasksize;
}
lowmem_print(4, "lowmem_scan %lu, %x, return %lu\n",
sc->nr_to_scan, sc->gfp_mask, rem);
rcu_read_unlock();
return rem;
}
內核LMK的原理很簡單:首先注冊了shrinker,在內存緊張的時候會觸發lowmem_scan方法,這個方法要做的就是找打一個進程,然后殺掉他,釋放一些內存。
- 獲取剩余內存的大小,和Minfree內存閥值做比較,找到對應的內存閥值,找到對應的adj值。
- 遍歷所有的進程,大于該adj的值的進程是要殺掉的目標進程, 但是并不是全部殺掉,而是找到adj最大的進程殺掉,如果最大adj有多個相同adj進程,則殺掉占用內存最大的一個
內核LMK的實現邏輯已經分析完了
lmkd內存查殺的實現
lmkd實現內存查實的方式是基于cgroup memory來實現的。
什么是cgroup memory?
Cgroup的memory子系統,即memory cgroup(本文以下簡稱memcg),提供了對系統中一組進程的內存行為的管理,從而對整個系統中對內存有不用需求的進程或應用程序區分管理,實現更有效的資源利用和隔離。
cgroup memory相關的文件
cgroup.event_control #用于eventfd的接口
memory.usage_in_bytes #顯示當前已用的內存
memory.limit_in_bytes #設置/顯示當前限制的內存額度
memory.failcnt #顯示內存使用量達到限制值的次數
memory.max_usage_in_bytes #歷史內存最大使用量
memory.soft_limit_in_bytes #設置/顯示當前限制的內存軟額度
memory.stat #顯示當前cgroup的內存使用情況
memory.use_hierarchy #設置/顯示是否將子cgroup的內存使用情況統計到當前cgroup里面
memory.force_empty #觸發系統立即盡可能的回收當前cgroup中可以回收的內存
memory.pressure_level #設置內存壓力的通知事件,配合cgroup.event_control一起使用
memory.swappiness #設置和顯示當前的swappiness
memory.move_charge_at_immigrate #設置當進程移動到其他cgroup中時,它所占用的內存是否也隨著移動過去
memory.oom_control #設置/顯示oom controls相關的配置
memory.numa_stat #顯示numa相關的內存
簡單的了解了下cgroup的原理,再來看lmkd的init方法
static int init(void) {
has_inkernel_module = !access(INKERNEL_MINFREE_PATH, W_OK);
use_inkernel_interface = has_inkernel_module;
if (use_inkernel_interface) {
ALOGI("Using in-kernel low memory killer interface");
} else {
//如果沒有使用內核LMK機制,則初始化memory pressure
if (!init_mp_common(VMPRESS_LEVEL_LOW) ||
!init_mp_common(VMPRESS_LEVEL_MEDIUM) ||
!init_mp_common(VMPRESS_LEVEL_CRITICAL)) {
ALOGE("Kernel does not support memory pressure events or in-kernel low memory killer");
return -1;
}
}
for (i = 0; i <= ADJTOSLOT(OOM_SCORE_ADJ_MAX); i++) {
procadjslot_list[i].next = &procadjslot_list[i];
procadjslot_list[i].prev = &procadjslot_list[i];
}
return 0;
}
static bool init_mp_common(enum vmpressure_level level) {
int mpfd;
int evfd;
int evctlfd;
char buf[256];
struct epoll_event epev;
int ret;
int level_idx = (int)level;
const char *levelstr = level_name[level_idx];
//打開pressure_level的文件節點
mpfd = open(MEMCG_SYSFS_PATH "memory.pressure_level", O_RDONLY | O_CLOEXEC);
if (mpfd < 0) {
ALOGI("No kernel memory.pressure_level support (errno=%d)", errno);
goto err_open_mpfd;
}
//打開event_control的文件節點
evctlfd = open(MEMCG_SYSFS_PATH "cgroup.event_control", O_WRONLY | O_CLOEXEC);
if (evctlfd < 0) {
ALOGI("No kernel memory cgroup event control (errno=%d)", errno);
goto err_open_evctlfd;
}
//創建一個eventfd
evfd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
if (evfd < 0) {
ALOGE("eventfd failed for level %s; errno=%d", levelstr, errno);
goto err_eventfd;
}
//往cgroup.event_control中寫入:<event_fd> <pressure_level_fd> <level>
ret = snprintf(buf, sizeof(buf), "%d %d %s", evfd, mpfd, levelstr);
if (ret >= (ssize_t)sizeof(buf)) {
ALOGE("cgroup.event_control line overflow for level %s", levelstr);
goto err;
}
ret = TEMP_FAILURE_RETRY(write(evctlfd, buf, strlen(buf) + 1));
if (ret == -1) {
ALOGE("cgroup.event_control write failed for level %s; errno=%d",
levelstr, errno);
goto err;
}
//然后使用epoll監聽evfd, 等待memory pressure_level的事件通知
epev.events = EPOLLIN;
/* use data to store event level */
vmpressure_hinfo[level_idx].data = level_idx;
vmpressure_hinfo[level_idx].handler = mp_event_common;
epev.data.ptr = (void *)&vmpressure_hinfo[level_idx];
ret = epoll_ctl(epollfd, EPOLL_CTL_ADD, evfd, &epev);
if (ret == -1) {
ALOGE("epoll_ctl for level %s failed; errno=%d", levelstr, errno);
goto err;
}
maxevents++;
mpevfd[level] = evfd;
close(evctlfd);
return true;
err:
close(evfd);
err_eventfd:
close(evctlfd);
err_open_evctlfd:
close(mpfd);
err_open_mpfd:
return false;
}
先了解下memory pressure_level的用法
memory.pressure_level
這個文件主要用來監控當前cgroup的內存壓力,當內存壓力大時(即已使用內存快達到設置的限額),在分配內存之前需要先回收部分內存,從而影響內存分配速度,影響性能,而通過監控當前cgroup的內存壓力,可以在有壓力的時候采取一定的行動來改善當前cgroup的性能,比如關閉當前cgroup中不重要的服務等。目前有三種壓力水平:
low
意味著系統在開始為當前cgroup分配內存之前,需要先回收內存中的數據了,這時候回收的是在磁盤上有對應文件的內存數據。
medium
意味著系統已經開始頻繁為當前cgroup使用交換空間了。
critical
快撐不住了,系統隨時有可能kill掉cgroup中的進程。如何配置相關的監聽事件呢?和memory.oom_control類似,大概步驟如下:
利用函數eventfd(2)創建一個event_fd
打開文件memory.pressure_level,得到pressure_level_fd
往cgroup.event_control中寫入這么一串:<event_fd> <pressure_level_fd> <level>
然后通過讀event_fd得到通知
init_mp_common方法嚴格的按照pressure_level的用法,注冊了pressure_level的事件回調, pressure_level分為三個等級
static const char *level_name[] = {
"low",
"medium",
"critical"
};
當內存達到相應的等級,就會回調mp_event_common方法, 由mp_event_common方法來處理。
static void mp_event_common(int data, uint32_t events __unused) {
int ret;
unsigned long long evcount;
int64_t mem_usage, memsw_usage;
int64_t mem_pressure;
enum vmpressure_level lvl;
union meminfo mi;
union zoneinfo zi;
static struct timeval last_report_tm;
static unsigned long skip_count = 0;
enum vmpressure_level level = (enum vmpressure_level)data;
long other_free = 0, other_file = 0;
int min_score_adj;
int pages_to_free = 0;
int minfree = 0;
static struct reread_data mem_usage_file_data = {
.filename = MEMCG_MEMORY_USAGE,
.fd = -1,
};
static struct reread_data memsw_usage_file_data = {
.filename = MEMCG_MEMORYSW_USAGE,
.fd = -1,
};
//檢查觸發該方法壓力類型,如果大于一種類型出發,則選擇壓力大的一個
for (lvl = VMPRESS_LEVEL_LOW; lvl < VMPRESS_LEVEL_COUNT; lvl++) {
if (mpevfd[lvl] != -1 &&
TEMP_FAILURE_RETRY(read(mpevfd[lvl],
&evcount, sizeof(evcount))) > 0 &&
evcount > 0 && lvl > level) {
level = lvl;
}
}
//獲取剩余內存的大小
if (meminfo_parse(&mi) < 0 || zoneinfo_parse(&zi) < 0) {
ALOGE("Failed to get free memory!");
return;
}
//使用設置的最小內存閥值
if (use_minfree_levels) {
int i;
//獲取剩余內存大小
other_free = mi.field.nr_free_pages - zi.field.totalreserve_pages;
if (mi.field.nr_file_pages > (mi.field.shmem + mi.field.unevictable + mi.field.swap_cached)) {
other_file = (mi.field.nr_file_pages - mi.field.shmem -
mi.field.unevictable - mi.field.swap_cached);
} else {
other_file = 0;
}
//根據剩余內存大小,找到對應的內存閥值及adj的值
min_score_adj = OOM_SCORE_ADJ_MAX + 1;
for (i = 0; i < lowmem_targets_size; i++) {
minfree = lowmem_minfree[i];
if (other_free < minfree && other_file < minfree) {
min_score_adj = lowmem_adj[i];
break;
}
}
//如果得到的adj值=1000, 則表示內存狀況良好,無需查殺內存直接返回
if (min_score_adj == OOM_SCORE_ADJ_MAX + 1) {
if (debug_process_killing) {
ALOGI("Ignore %s memory pressure event "
"(free memory=%ldkB, cache=%ldkB, limit=%ldkB)",
level_name[level], other_free * page_k, other_file * page_k,
(long)lowmem_minfree[lowmem_targets_size - 1] * page_k);
}
return;
}
//計算要達到最大內存閥值情況下需要釋放的內存大小
/* Free up enough pages to push over the highest minfree level */
pages_to_free = lowmem_minfree[lowmem_targets_size - 1] -
((other_free < other_file) ? other_free : other_file);
goto do_kill;
}
if (level == VMPRESS_LEVEL_LOW) {
record_low_pressure_levels(&mi);
}
//內存狀況良好, 無需查殺,直接退出
if (level_oomadj[level] > OOM_SCORE_ADJ_MAX) {
/* Do not monitor this pressure level */
return;
}
if ((mem_usage = get_memory_usage(&mem_usage_file_data)) < 0) {
goto do_kill;
}
if ((memsw_usage = get_memory_usage(&memsw_usage_file_data)) < 0) {
goto do_kill;
}
// Calculate percent for swappinness.
mem_pressure = (mem_usage * 100) / memsw_usage;
//根據一定的規則,計算出壓力level
if (enable_pressure_upgrade && level != VMPRESS_LEVEL_CRITICAL) {
// We are swapping too much.
if (mem_pressure < upgrade_pressure) {
level = upgrade_level(level);
if (debug_process_killing) {
ALOGI("Event upgraded to %s", level_name[level]);
}
}
}
// If the pressure is larger than downgrade_pressure lmk will not
// kill any process, since enough memory is available.
if (mem_pressure > downgrade_pressure) {
if (debug_process_killing) {
ALOGI("Ignore %s memory pressure", level_name[level]);
}
return;
} else if (level == VMPRESS_LEVEL_CRITICAL &&
mem_pressure > upgrade_pressure) {
if (debug_process_killing) {
ALOGI("Downgrade critical memory pressure");
}
// Downgrade event, since enough memory available.
level = downgrade_level(level);
}
do_kill:
if (low_ram_device) {
//只殺掉一個進程
if (find_and_kill_processes(level, level_oomadj[level], 0) == 0) {
if (debug_process_killing) {
ALOGI("Nothing to kill");
}
}
} else {
int pages_freed;
//如果不使用設置的minfree內存閥值,則根據計算level對應的adj來查殺內存
if (!use_minfree_levels) {
/* If pressure level is less than critical and enough free swap then ignore */
if (level < VMPRESS_LEVEL_CRITICAL &&
mi.field.free_swap > low_pressure_mem.max_nr_free_pages) {
if (debug_process_killing) {
ALOGI("Ignoring pressure since %" PRId64
" swap pages are available ",
mi.field.free_swap);
}
return;
}
//計算出需要釋放的內存大小
if (mi.field.nr_free_pages < low_pressure_mem.max_nr_free_pages) {
pages_to_free = low_pressure_mem.max_nr_free_pages -
mi.field.nr_free_pages;
} else {
if (debug_process_killing) {
ALOGI("Ignoring pressure since more memory is "
"available (%" PRId64 ") than watermark (%" PRId64 ")",
mi.field.nr_free_pages, low_pressure_mem.max_nr_free_pages);
}
return;
}
min_score_adj = level_oomadj[level];
}
//根據min_score_adj和page_to_free來殺掉進程
//大于min_score_adj的進程都屬于目標進程,循環查殺,并累計殺掉線程釋放內存的大小
//當釋放的內存大于page_to_free的大小的時候,就可以停止了
pages_freed = find_and_kill_processes(level, min_score_adj, pages_to_free);
if (use_minfree_levels) {
ALOGI("Killing because cache %ldkB is below "
"limit %ldkB for oom_adj %d\n"
" Free memory is %ldkB %s reserved",
other_file * page_k, minfree * page_k, min_score_adj,
other_free * page_k, other_free >= 0 ? "above" : "below");
}
if (pages_freed < pages_to_free) {
ALOGI("Unable to free enough memory (pages to free=%d, pages freed=%d)",
pages_to_free, pages_freed);
} else {
ALOGI("Reclaimed enough memory (pages to free=%d, pages freed=%d)",
pages_to_free, pages_freed);
gettimeofday(&last_report_tm, NULL);
}
}
}
lmkd內存查殺原理:
- 當內存壓力出發該方法的時候,讀取當前的內存壓力類型
- 獲取當前剩余內存的大小
- 根據剩余內存計算要殺掉進程的adj值,以及需要釋放內存的大小
分為兩種情況:
a: 如果使用的是設置的minfree和adj值,則根據剩余內存大小找到對應的adj,和需要釋放內存大小
b:如果不使用設置的內存閥值,則根據當前壓力類型計算adj,以及達到上一個等級需要釋放內存大小 - 根據以上計算的adj和需要釋放內存大小來查殺內存,從大于adj的進程中開始查殺進程并釋放內存,當釋放內存大小達到需求 就可以停止查殺內存了。
總結
進程查殺的兩種實現方式原理類似,都是注冊是的回調,當內存緊張的時候根據剩余內存的adj來查殺大于該adj的內存。內核shrinker方式是只有內存緊張的時候才會去釋放,而cgroup方式控制更加精細, 根據不同等級來觸發內存回收。