線段樹
- 每個節點表示一個區間內相應的信息。
- 葉子節點只存一個元素(區間為1)。
- 線段樹不是完全二叉樹,也不是滿二叉樹。
- 線段樹是平衡二叉樹(最大深度與最小深度差距不會超過1,堆也是平衡二叉樹,logn)。
- 一般不考慮向線段樹中添加和刪除元素,且固定區間。
- 可將其看做一個節點可以為空的滿二叉樹(特殊的完全二叉樹),可用數組表示。
- 用數組表示線段樹應開辟4倍空間。
對于滿二叉樹:有(2^h - 1) 個節點,大約2^h。 最后一層(葉子節點)的節點數是2^(h-1) 約等于前面所有層節點之和。
所以如果線段樹是區間有n個元素(葉子節點為n),當n = 2^h,只需要開辟2n的空間足以存全部節點。如果n= 2^k + 1, 最后一層只有少數幾個葉子節點,則需要開辟4n的空間節點(將其視其余葉子節點為空的滿二叉樹)。
滿二叉樹
線段樹
節點視為空
代碼示例 創建線段樹
public class SegmentTree<E> {
private E[] tree;
private E[] data;
private Merger<E> merger;
public SegmentTree(E[] arr, Merger<E> merger){
this.merger = merger;
data = (E[])new Object[arr.length];
for (int i = 0; i < arr.length; i++) {
data[i] = arr[i];
}
tree = (E[])new Object[arr.length * 4];
buildSegmentTree(0, 0 , data.length - 1);
}
public int getSize(){
return data.length;
}
public E get(int index){
if (index < 0 || index >= data.length)
throw new IllegalArgumentException("Index is illegal");
return data[index];
}
private int leftChild(int index){
return 2*index + 1;
}
private int rightChild(int index){
return 2*index + 2;
}
// 在treeIndex的位置創建區間為[l...r]的線段樹
private void buildSegmentTree(int treeIndex, int l, int r){
if (l == r){
tree[treeIndex] = data[l];
return;
}
int mid = l + (r - l) /2;
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
buildSegmentTree(leftTreeIndex, l, mid);
buildSegmentTree(rightTreeIndex, mid + 1, r);
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
}
}
查詢
//返回區間[queryL, queryR]的值
public E query(int queryL, int queryR){
if (queryL >= data.length || queryL < 0 || queryR >= data.length || queryR < 0 || queryL > queryR)
throw new IllegalArgumentException("Index is illegal.");
return query(0, 0,data.length - 1, queryL, queryR);
}
private E query(int treeIndex, int l, int r, int queryL, int queryR) {
if (l == queryL && r == queryR)
return tree[treeIndex];
int mid = l + (r - l) / 2;
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if (queryR <= mid) {
return query(leftTreeIndex, l, mid, queryL, queryR);
} else if (queryL >= mid + 1) {
return query(rightTreeIndex, mid + 1, r, queryL, queryR);
}
E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
return merger.merge(leftResult, rightResult);
}
更新
//更新
public void set(int index, E e){
if (index < 0 || index > data.length)
throw new IllegalArgumentException("Illegal index");
data[index] = e;
set(0, 0, data.length - 1, index, e);
}
//在以treeIndex為根的線段樹中更新index的值為e;
private void set(int treeIndex, int l, int r, int index, E e){
if (l == r) {
tree[treeIndex] = e;
return;
}
int mid = l + (r - l)/2;
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if (index <= mid){
set(leftTreeIndex, 0, mid, index, e);
} else {
set(rightTreeIndex, mid + 1, r, index, e);
}
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
}
時間復雜度
時間復雜度為:O(logn)
相關題目:LeetCode 303 區域與檢索