What Powers Instagram: Hundreds of Instances, Dozens of Technologies

What Powers Instagram: Hundreds of Instances, Dozens of Technologies

One of the questions we always get asked at meet-ups and conversations with other engineers is, “what’s your stack?” We thought it would be fun to give a sense of all the systems that power Instagram, at a high-level; you can look forward to more in-depth descriptions of some of these systems in the future. This is how our system has evolved in the just-over-1-year that we’ve been live, and while there are parts we’re always re-working, this is a glimpse of how a startup with a small engineering team can scale to our 14 million+ users in a little over a year. Our core principles when choosing a system are:

Keep it very simple

Don’t re-invent the wheel

Go with proven and solid technologies when you can

We’ll go from top to bottom:

OS / Hosting

We run Ubuntu Linux 11.04 (“Natty Narwhal”) on Amazon EC2. We’ve found previous versions of Ubuntu had all sorts of unpredictable freezing episodes on EC2 under high traffic, but Natty has been solid. We’ve only got 3 engineers, and our needs are still evolving, so self-hosting isn’t an option we’ve explored too deeply yet, though is something we may revisit in the future given the unparalleled growth in usage.

Load Balancing

Every request to Instagram servers goes through load balancing machines; we used to run 2nginxmachines and DNS Round-Robin between them. The downside of this approach is the time it takes for DNS to update in case one of the machines needs to get decomissioned. Recently, we moved to using Amazon’s Elastic Load Balancer, with 3 NGINX instances behind it that can be swapped in and out (and are automatically taken out of rotation if they fail a health check). We also terminate our SSL at the ELB level, which lessens the CPU load on nginx. We use Amazon’s Route53 for DNS, which they’ve recently added a pretty good GUI tool for in the AWS console.

Application Servers

Next up comes the application servers that handle our requests. We runDjangoon Amazon High-CPU Extra-Large machines, and as our usage grows we’ve gone from just a few of these machines to over 25 of them (luckily, this is one area that’s easy to horizontally scale as they are stateless). We’ve found that our particular work-load is very CPU-bound rather than memory-bound, so the High-CPU Extra-Large instance type provides the right balance of memory and CPU.

We usehttp://gunicorn.org/as our WSGI server; we used to use mod_wsgi and Apache, but found Gunicorn was much easier to configure, and less CPU-intensive. To run commands on many instances at once (like deploying code), we useFabric, which recently added a useful parallel mode so that deploys take a matter of seconds.

Data storage

Most of our data (users, photo metadata, tags, etc) lives in PostgreSQL; we’vepreviously writtenabout how we shard across our different Postgres instances. Our main shard cluster involves 12 Quadruple Extra-Large memory instances (and twelve replicas in a different zone.)

We’ve found that Amazon’s network disk system (EBS) doesn’t support enough disk seeks per second, so having all of our working set in memory is extremely important. To get reasonable IO performance, we set up our EBS drives in a software RAID using mdadm.

As a quick tip, we’ve found thatvmtouchis a fantastic tool for managing what data is in memory, especially when failing over from one machine to another where there is no active memory profile already.Here is the scriptwe use to parse the output of a vmtouch run on one machine and print out the corresponding vmtouch command to run on another system to match its current memory status.

All of our PostgreSQL instances run in a master-replica setup using Streaming Replication, and we use EBS snapshotting to take frequent backups of our systems. We use XFS as our file system, which lets us freeze & unfreeze the RAID arrays when snapshotting, in order to guarantee a consistent snapshot (our original inspiration came fromec2-consistent-snapshot. To get streaming replication started, our favorite tool isrepmgrby the folks at 2ndQuadrant.

To connect to our databases from our app servers, we made early on that had a huge impact on performance was usingPgbouncerto pool our connections to PostgreSQL. We foundChristophe Pettus’s blogto be a great resource for Django, PostgreSQL and Pgbouncer tips.

The photos themselves go straight to Amazon S3, which currently stores several terabytes of photo data for us. We use Amazon CloudFront as our CDN, which helps with image load times from users around the world (like in Japan, our second most-popular country).

We also useRedisextensively; it powers our main feed, our activity feed, our sessions system (here’s our Django session backend), and otherrelated systems. All of Redis’ data needs to fit in memory, so we end up running several Quadruple Extra-Large Memory instances for Redis, too, and occasionally shard across a few Redis instances for any given subsystem. We run Redis in a master-replica setup, and have the replicas constantly saving the DB out to disk, and finally use EBS snapshots to backup those DB dumps (we found that dumping the DB on the master was too taxing). Since Redis allows writes to its replicas, it makes for very easy online failover to a new Redis machine, without requiring any downtime.

For ourgeo-search API, we used PostgreSQL for many months, but once our Media entries were sharded, moved over to usingApache Solr. It has a simple JSON interface, so as far as our application is concerned, it’s just another API to consume.

Finally, like any modern Web service, we use Memcached for caching, and currently have 6 Memcached instances, which we connect to using pylibmc & libmemcached. Amazon has an Elastic Cache service they’ve recently launched, but it’s not any cheaper than running our instances, so we haven’t pushed ourselves to switch quite yet.

Task Queue & Push Notifications

When a user decides to share out an Instagram photo to Twitter or Facebook, or when we need to notify one of ourReal-time subscribersof a new photo posted, we push that task intoGearman, a task queue system originally written at Danga. Doing it asynchronously through the task queue means that media uploads can finish quickly, while the ‘heavy lifting’ can run in the background. We have about 200 workers (all written in Python) consuming the task queue at any given time, split between the services we share to. We also do our feed fan-out in Gearman, so posting is as responsive for a new user as it is for a user with many followers.

For doing push notifications, the most cost-effective solution we found washttps://github.com/samuraisam/pyapns, an open-source Twisted service that has handled over a billion push notifications for us, and has been rock-solid.

Monitoring

With 100+ instances, it’s important to keep on top of what’s going on across the board. We useMuninto graph metrics across all of our system, and also alert us if anything is outside of its normal range. We write a lot of custom Munin plugins, building on top ofPython-Munin, to graph metrics that aren’t system-level (for example, signups per minute, photos posted per second, etc). We usePingdomfor external monitoring of the service, andPagerDutyfor handling notifications and incidents.

For Python error reporting, we useSentry, an awesome open-source Django app written by the folks at Disqus. At any given time, we can sign-on and see what errors are happening across our system, in real time.

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,197評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,415評論 3 415
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,104評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,884評論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,647評論 6 408
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,130評論 1 323
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,208評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,366評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,887評論 1 334
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,737評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,939評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,478評論 5 358
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,174評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,586評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,827評論 1 283
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,608評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,914評論 2 372

推薦閱讀更多精彩內容

  • 關于我的對別人有錯沒有定解(老覺得都是自己的錯),師父(我先生)又發表了精辟的見解。 他說,他不知道那樣說話會讓我...
    走向健康閱讀 548評論 0 1
  • 轉眼間已經實習了2個半月,昨天立下flag說今天一定要寫一寫這段時間的實習收獲,實現flag—— 1.主動反饋,形...
    Leona2028閱讀 485評論 0 0
  • 在這段感情里,最遺憾的是你從頭到尾都沒有正式給過我頭銜,所謂的女朋友只存在你我兩人的私人認知中,到后來你刪了我所有...
    049e8e02d6b7閱讀 212評論 0 0