Lidar variables selection in SAS

Date: Aug 16, 2017

- All variables used are log transformed to?improve R square.

- In SAS codes, words in bolds are keywords in SAS for programming.



There are various?model selection methods?in SAS PROC REG in which I used STEPWISE and RSQUARE.

STEPWISE is the most popular model selection methods in PROC REG. We can make adjustments to SLE ?and SLS. I used the default setting.

PROC REG DATA = PLOTlog;

MODEL BIO_MG_HAN = Total_retu Elev_minim Elev_maxim Elev_mean Elev_mode Elev_stdde Elev_varia Elev_CV Elev_IQ Elev_kurto Elev_AAD Elev_MAD_m Elev_MAD_1 Elev_L1 Elev_L2?Elev_L_CV Elev_P01 Elev_P05 Elev_P10 Elev_P20 Elev_P25 Elev_P30?Elev_P40 Elev_P50 Elev_P60 Elev_P70 Elev_P75 Elev_P80 Elev_P90?Elev_P95 Elev_P99 Canopy_rel Elev_SQRT_ Elev_CURT_?

/ SELECTION = STEPWISE;

RUN;

R square selection (RSQUARE) always identifies the model with the largest R square for each number of variables considered. It requires much more computer time than the other selection methods. We can fix this problem by dividing the data into subgroups, find the largest R square in subgroup firstly, then compare the best ones. However, this only applies to 1 variables.

PROC REG DATA = PLOTlog;

MODEL BIO_MG_HAN = Total_retu Elev_minim Elev_maxim Elev_mean Elev_mode Elev_stdde Elev_varia Elev_CV Elev_IQ Elev_kurto Elev_AAD Elev_MAD_m Elev_MAD_1 Elev_L1 Elev_L2 Elev_L_CV Elev_P01 Elev_P05 Elev_P10 Elev_P20 Elev_P25 Elev_P30 Elev_P40 Elev_P50 Elev_P60 Elev_P70 Elev_P75 Elev_P80 Elev_P90 Elev_P95 Elev_P99 Canopy_rel Elev_SQRT_ Elev_CURT_

/ SELECTION = RSQUARE STOP=1;

RUN;


Results from the?stepwise selection:


Summary of Stepwise Selection

Results from R square selection:


Summary of RSQUARE Selection

Comparison of two models:

PROC REG DATA = PLOTlog OUTEST=OUT1;

MODEL BIO_MG_HAN = Elev_mode / AIC BIC PRESS RSQUARE RMSE;

PROC PRINT DATA = OUT1;

PROC REG DATA = PLOTlog OUTEST=OUT2;

MODEL BIO_MG_HAN = Elev_mode Total_retu Elev_P95/ AIC BIC PRESS RSQUARE RMSE VIF;

PROC PRINT DATA=OUT2;

RUN;


Model comparison

Model Selection Criteria

1. ?Statistical test on individual coefficients at a given value (0.05). It is desirable to keep all predictor variables in the model significant.

For RSQUARE selection model, Elev_mode variable is significant.

For STEWWISE selection model, Elev_mode is significant while Total_retu and Elev_P95 are not significant.?


RSQUARE selection model parameter estimates


STEPWISE selection model parameter estimates

2. Model coefficient of determination R square. The larger, the better.

R square increases with the number of variables in the model.

RSQURE?R square: 0.7837

STEPWISE R square: 0.8223

3. Adjusted R square. The larger, the better.

Compared with R square, Adjusted R square does not always increase with number of variables in the model. It removes the impact of degrees of freedom and gives a quantity that is more comparable than R square over models involving different numbers of parameters.

RSQURE adjusted R square: 0.7786

STEPWISE adjusted R square: 0.8090

4. Mallow's Cp. Close to the number of coefficients (including intercept).

Not considered in here. Mallow's Cp is calculated in the SELECTION process.?

5. Predicted Sum of Squares (PRESS). The smaller, the better.

The PRESS statistic gives a good indication of the predictive power of the model. It can be used in combination with RMSE. We get smaller RMSE when the model gets?closer to each data point, however, this could cause overfitting problem which gives us not representative and predictive?model. The PRESS guards against this by testing how well the current model would predict the points in the dataset.

RSQUARE PRESS: 2.13015

STEPWISE PRESS: 1.79648

6. Model Selection Criteria Based on Information Theory, including AIC, AICC,

BIC and SBC. The smaller, the better.

AIC is not a test of the model in the sense of hypothesis testing; rather it is a test between models - a tool for model selection. Akaike's rule of thumb: two models are essentially indistinguishable if the difference of their AICs is less than 2.

7. Variance Inflation (VIF).?

This is for multicollinearity detection and diagnostics. VIF provide an indication of which regression coefficients are adversely affected and to what extent. It is generally believed that if any VIF exceeds 10, there is a reason for at least some concerns on multicollinearity in the data.?

The highest VIF in the STEPWISE selection model is 4.99, which is smaller than 10.?

Summary


Comparison Summary

STEPWISE model is better.

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,428評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,024評論 3 413
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,285評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,548評論 1 307
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,328評論 6 404
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,878評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 42,971評論 3 439
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,098評論 0 286
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,616評論 1 331
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,554評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,725評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,243評論 5 355
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 43,971評論 3 345
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,361評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,613評論 1 280
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,339評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,695評論 2 370

推薦閱讀更多精彩內容