DSSM模型和tensorflow實(shí)現(xiàn)

DSSM 的原理很簡(jiǎn)單,通過(guò)搜索引擎里 Query 和 Title 的海量的點(diǎn)擊曝光日志,用 DNN 把 Query 和 Title 表達(dá)為低緯語(yǔ)義向量,并通過(guò) cosine 距離來(lái)計(jì)算兩個(gè)語(yǔ)義向量的距離,最終訓(xùn)練出語(yǔ)義相似度模型。該模型既可以用來(lái)預(yù)測(cè)兩個(gè)句子的語(yǔ)義相似度,又可以獲得某句子的低緯語(yǔ)義向量表達(dá)。

論文原文

模型結(jié)構(gòu):


第一層是一個(gè)簡(jiǎn)單的映射層,使用word hashing 方法將句子50W的one-hot表示降低到了3W,原理是對(duì)句子做letter level 的trigrim 并累加。
如下圖: #boy#會(huì)被切分成#-b-o, b-o-y, o-y-#。



選用trigrim而不用bigrim或者unigrim的原因是為了權(quán)衡表示能力和沖突,兩個(gè)單詞沖突表示兩個(gè)單詞編碼后的表示完全相同。


第二層到第四層是典型的MLP網(wǎng)絡(luò),最終得到128維的句子表示



激活函數(shù)是tanh


對(duì)正負(fù)樣本計(jì)算cosine距離



再利用平滑后的softmax得到概率



損失函數(shù)是似然損失,原理是最大化點(diǎn)擊正樣本的概率

論文中實(shí)現(xiàn)的一些細(xì)節(jié):


下面用tensorflow實(shí)現(xiàn)這個(gè)經(jīng)典的model
導(dǎo)包

import tensorflow as tf

定義基于語(yǔ)料的letter trigrim維度和輸入的query batch 和 doc batch

#TRIGRAM_D  表示letter trigrim 之后的維度
TRIGRAM_D = 1000

#定義query輸入和doc輸入
query_batch = tf.sparse_placeholder(tf.float32, 
                                    shape=[None,TRIGRAM_D], 
                                    name='QueryBatch')
doc_batch = tf.sparse_placeholder(tf.float32, 
                                    shape=[None, TRIGRAM_D], 
                                    name='DocBatch')

初始化第一層的參數(shù),L1_N表示輸出的維度,參考的是論文中的初始化方法

#第一層輸出維度
L1_N = 300
l1_par_range = np.sqrt(6.0 / (TRIGRAM_D + L1_N))
weight1 = tf.Variable(tf.random_uniform([TRIGRAM_D, L1_N], 
                                        -l1_par_range, 
                                        l1_par_range))
bias1 = tf.Variable(tf.random_uniform([L1_N], 
                                       -l1_par_range, 
                                       l1_par_range))

#因?yàn)閿?shù)據(jù)比較稀疏,所以用sparse_tensor_dense_matmul
query_l1 = tf.sparse_tensor_dense_matmul(query_batch, weight1) + bias1
doc_l1 = tf.sparse_tensor_dense_matmul(doc_batch, weight1) + bias1

#激活層,也可以換成別的激活函數(shù)
query_l1_out = tf.nn.tanh(query_l1)
doc_l1_out = tf.nn.tanh(doc_l1)

接下來(lái)構(gòu)造第二三層

#第二層的輸出維度
L2_N = 300
l2_par_range = np.sqrt(6.0 / (L1_N+ L2_N))
weight2 = tf.Variable(tf.random_uniform([L1_N, L2_N], 
                                        -l2_par_range, 
                                        l2_par_range))
bias2 = tf.Variable(tf.random_uniform([L2_N], 
                                       -l2_par_range, 
                                       l2_par_range))

query_l2 = tf.sparse_tensor_dense_matmul(query_l1_out , weight2) + bias2
doc_l2 = tf.sparse_tensor_dense_matmul(doc_l1_out , weight2) + bias2

query_l2_out = tf.nn.tanh(query_l2)
doc_l2_out = tf.nn.tanh(doc_l2)

#第三層
L3_N = 128
l3_par_range = np.sqrt(6.0 / (L2_N+ L3_N))
weight3 = tf.Variable(tf.random_uniform([L2_N, L3_N], 
                                        -l3_par_range, 
                                        l3_par_range))
bias3 = tf.Variable(tf.random_uniform([L3_N], 
                                       -l3_par_range, 
                                       l3_par_range))

query_l3 = tf.sparse_tensor_dense_matmul(query_l2_out , weight3) + bias3
doc_l3 = tf.sparse_tensor_dense_matmul(doc_l2_out , weight3) + bias3

query_l3_out = tf.nn.tanh(query_l3)
doc_l3_out = tf.nn.tanh(doc_l3)

計(jì)算相似度


#NEG表示負(fù)樣本的個(gè)數(shù)
NEG  = 4

# ||yq||
query_norm = tf.tile(tf.sqrt(tf.reduce_sum(tf.square(query_l3_out ), 1, True)), 
                     [NEG + 1, 1])
# ||yd||
doc_norm = tf.sqrt(tf.reduce_sum(tf.square(doc_l3_out), 1, True))

# yqT yd
prod = tf.reduce_sum(tf.mul(tf.tile(query_l3_out , [NEG + 1, 1]), doc_l3_out), 1, True)
norm_prod = tf.mul(query_norm, doc_norm)

# cosine
cos_sim_raw = tf.truediv(prod, norm_prod)
cos_sim = tf.transpose(tf.reshape(tf.transpose(cos_sim_raw), [NEG + 1, BS])) * Gamma

計(jì)算loss

#BS為batch_size,計(jì)算batch平均損失

prob = tf.nn.softmax((cos_sim))

#正例的softmax值
hit_prob = tf.slice(prob, [0, 0], [-1, 1])

#最小化loss,計(jì)算batch的平均損失
loss = -tf.reduce_sum(tf.log(hit_prob)) / BS

定義優(yōu)化方法,訓(xùn)練

#定義優(yōu)化方法和學(xué)習(xí)率
train_step = tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize(loss)

with tf.Session(config=config) as sess:
    sess.run(tf.initialize_all_variables())
    for step in range(FLAGS.max_steps):
        sess.run(train_step, feed_dict={query_batch : ...
                                        doc_batch   : ...}})

實(shí)現(xiàn)過(guò)程中的一些細(xì)節(jié):

  1. doc和query是share hash embedding和mlp層的;
  2. 損失函數(shù)只包含了正例,但是在計(jì)算softmax值的時(shí)候考慮了反例,這也是反例存在的意義;
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書(shū)系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,818評(píng)論 6 531
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,185評(píng)論 3 414
  • 文/潘曉璐 我一進(jìn)店門(mén),熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人,你說(shuō)我怎么就攤上這事。” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 175,656評(píng)論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我,道長(zhǎng),這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 62,647評(píng)論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 71,446評(píng)論 6 405
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 54,951評(píng)論 1 321
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,041評(píng)論 3 440
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 42,189評(píng)論 0 287
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,718評(píng)論 1 333
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 40,602評(píng)論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 42,800評(píng)論 1 369
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,316評(píng)論 5 358
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,045評(píng)論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 34,419評(píng)論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 35,671評(píng)論 1 281
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 51,420評(píng)論 3 390
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 47,755評(píng)論 2 371