pandas文本處理的3大秘訣

公眾號:尤而小屋
作者:Peter
編輯:Peter

大家好,我是Peter~

本文主要介紹的是通過使用Pandas中3個字符串相關函數來篩選滿足需求的文本數據:

  • contains :包含某個字符
  • startswith:以字符開頭
  • endswith:以字符結尾
image

模擬數據

import pandas as pd
import numpy as np
df = pd.DataFrame({
    "name":["xiao ming","Xiao zhang",np.nan,"sun quan","guan yu"],
    "age":["22","19","20","34","39"],
    "sex":["male","Female","female","Female","male"],
    "address":["廣東省深圳市","浙江省杭州市","江蘇省蘇州市","福建省泉州市","廣東省廣州市"]
})

df
image
df.dtypes  # 查看字段類型
name       object
age        object
sex        object
address    object
dtype: object

在本次模擬的數據中,有4個特點:

  1. name字段:存在缺失值np.nan,且Xiao和xiao存在大小寫之分
  2. age:年齡字段,正常應該是數值型,模擬的數據是字符類型object
  3. sex:也存在F和f的大小寫之分
  4. address:正常寫法

數據類型轉換

我們將age字段的字符類型型轉成數值型

df["age"] = df["age"].astype(float)
df

<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

生成的數據如下,似乎和原始數據沒有區別;但是我們查看屬性字段的數據類型就會看到區別:

image
df.dtypes
name        object
age        float64  
sex         object
address     object
dtype: object

age字段已經轉成了float64位的數值型。

contains

contains是用于Series數據的函數,基本語法如下:

Series.str.contains(
    pat, 
    case=True, 
    flags=0, 
    na=None, 
    regex=True
)
  • pat:傳入的字符或者正則表達式
  • case:是否區分大小寫(對大小寫敏感)
  • flags:正則標志位,比如:re.IGNORECASE,表示忽略大小寫
  • na:可選項,標量類型;對原數據中的缺失值處理,如果是object-dtype, 使用numpy.nan 代替;如果是StringDtype, 用pandas.NA
  • regex:布爾值;True:傳入的pat看做是正則表達式,False:看做是正常的字符類型的表達式

默認情況

# 例子1:篩選包含xiao的數據

df["name"].str.contains("xiao")
0     True
1    False
2      NaN
3    False
4    False
Name: name, dtype: object

當屬性中存在缺失值的時候,需要帶上na參數:

缺失值處理

# 例子2:參數na使用

df[df["name"].str.contains("xiao",na=False)]

<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

</style>

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>age</th>
<th>sex</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>xiao ming</td>
<td>22.0</td>
<td>male</td>
<td>廣東省深圳市</td>
</tr>
</tbody>
</table>

</div>

如果不帶上則會報錯:

df[df["name"].str.contains("xiao")]
image

忽略大小寫

# 例子3:case使用

df["name"].str.contains("xiao",case=False)
0     True
1     True
2      NaN
3    False
4    False
Name: name, dtype: object

上面的結果直接忽略了大小寫,可以看到出現了兩個True:也就是xiao和Xiao的數據都被篩選出來:

df[df["name"].str.contains("xiao",case=False, na=False)]

<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

</style>

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>age</th>
<th>sex</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>xiao ming</td>
<td>22.0</td>
<td>male</td>
<td>廣東省深圳市</td>
</tr>
<tr>
<th>1</th>
<td>Xiao zhang</td>
<td>19.0</td>
<td>Female</td>
<td>浙江省杭州市</td>
</tr>
</tbody>
</table>

</div>

忽略大小寫和缺失值

# 例子4:忽略大小寫和缺失值
df[df["sex"].str.contains("f",case=False, na=False)]

<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

</style>

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>age</th>
<th>sex</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<th>1</th>
<td>Xiao zhang</td>
<td>19.0</td>
<td>Female</td>
<td>浙江省杭州市</td>
</tr>
<tr>
<th>2</th>
<td>NaN</td>
<td>20.0</td>
<td>female</td>
<td>江蘇省蘇州市</td>
</tr>
<tr>
<th>3</th>
<td>sun quan</td>
<td>34.0</td>
<td>Female</td>
<td>福建省泉州市</td>
</tr>
</tbody>
</table>

</div>

正則表達式使用

# 例子5:正則表達式使用

df["address"].str.contains("^廣")
0     True
1    False
2    False
3    False
4     True
Name: address, dtype: bool

其中^表示開始的符號,即:以開頭的數據

df[df["address"].str.contains("^廣")]

<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

</style>

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>age</th>
<th>sex</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>xiao ming</td>
<td>22.0</td>
<td>male</td>
<td>廣東省深圳市</td>
</tr>
<tr>
<th>4</th>
<td>guan yu</td>
<td>39.0</td>
<td>male</td>
<td>廣東省廣州市</td>
</tr>
</tbody>
</table>

</div>

正則表達式中的$表示結尾的符號;下面是篩選以結尾的數據:

df[df["address"].str.contains("市$")]

<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

</style>

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>age</th>
<th>sex</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>xiao ming</td>
<td>22.0</td>
<td>male</td>
<td>廣東省深圳市</td>
</tr>
<tr>
<th>1</th>
<td>Xiao zhang</td>
<td>19.0</td>
<td>Female</td>
<td>浙江省杭州市</td>
</tr>
<tr>
<th>2</th>
<td>NaN</td>
<td>20.0</td>
<td>female</td>
<td>江蘇省蘇州市</td>
</tr>
<tr>
<th>3</th>
<td>sun quan</td>
<td>34.0</td>
<td>Female</td>
<td>福建省泉州市</td>
</tr>
<tr>
<th>4</th>
<td>guan yu</td>
<td>39.0</td>
<td>male</td>
<td>廣東省廣州市</td>
</tr>
</tbody>
</table>

</div>

在下面的正則表達式例子中,會在深蘇泉中任意選擇一個,然后包含這個字符的數據:

df[df["address"].str.contains("[深蘇泉]")]

<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

</style>

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>age</th>
<th>sex</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>xiao ming</td>
<td>22.0</td>
<td>male</td>
<td>廣東省深圳市</td>
</tr>
<tr>
<th>2</th>
<td>NaN</td>
<td>20.0</td>
<td>female</td>
<td>江蘇省蘇州市</td>
</tr>
<tr>
<th>3</th>
<td>sun quan</td>
<td>34.0</td>
<td>Female</td>
<td>福建省泉州市</td>
</tr>
</tbody>
</table>

</div>

startswith

startswith的語法相對簡單:

Series.str.startswith(pat, na=None)
  • pat:表示一個字符;注意:不接受正則表達式
  • na:表示對缺失值的處理;na=False表示忽略缺失值

pat參數

指定一個字符;不接受正則表達式

df["address"].str.startswith("廣")
0     True
1    False
2    False
3    False
4     True
Name: address, dtype: bool
df[df["address"].str.startswith("廣")]

<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

</style>

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>age</th>
<th>sex</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>xiao ming</td>
<td>22.0</td>
<td>male</td>
<td>廣東省深圳市</td>
</tr>
<tr>
<th>4</th>
<td>guan yu</td>
<td>39.0</td>
<td>male</td>
<td>廣東省廣州市</td>
</tr>
</tbody>
</table>

</div>

這種寫法和正則表達式的以某個字符開頭是同樣的效果:

df[df["address"].str.contains("^廣")]

<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

</style>

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>age</th>
<th>sex</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>xiao ming</td>
<td>22.0</td>
<td>male</td>
<td>廣東省深圳市</td>
</tr>
<tr>
<th>4</th>
<td>guan yu</td>
<td>39.0</td>
<td>male</td>
<td>廣東省廣州市</td>
</tr>
</tbody>
</table>

</div>

自動區分大小寫

startswith方法是自動區分大小寫的:

df[df["sex"].str.startswith("f")]

<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

</style>

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>age</th>
<th>sex</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<th>2</th>
<td>NaN</td>
<td>20.0</td>
<td>female</td>
<td>江蘇省蘇州市</td>
</tr>
</tbody>
</table>

</div>

df[df["sex"].str.startswith("F")]

<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

</style>

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>age</th>
<th>sex</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<th>1</th>
<td>Xiao zhang</td>
<td>19.0</td>
<td>Female</td>
<td>浙江省杭州市</td>
</tr>
<tr>
<th>3</th>
<td>sun quan</td>
<td>34.0</td>
<td>Female</td>
<td>福建省泉州市</td>
</tr>
</tbody>
</table>

</div>

缺失值處理

df["name"].str.startswith("xiao")
0     True
1    False
2      NaN
3    False
4    False
Name: name, dtype: object
df[df["name"].str.startswith("xiao",na=False)]

<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

</style>

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>age</th>
<th>sex</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>xiao ming</td>
<td>22.0</td>
<td>male</td>
<td>廣東省深圳市</td>
</tr>
</tbody>
</table>

</div>

endswith

指定以某個字符結尾,語法為:

Series.str.endswith(pat, na=None)
  • pat:表示一個字符;注意:不接受正則表達式
  • na:表示對缺失值的處理;na=False表示忽略缺失值

pat參數

# 以市結尾

df[df["address"].str.endswith("市")]

<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

</style>

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>age</th>
<th>sex</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>xiao ming</td>
<td>22.0</td>
<td>male</td>
<td>廣東省深圳市</td>
</tr>
<tr>
<th>1</th>
<td>Xiao zhang</td>
<td>19.0</td>
<td>Female</td>
<td>浙江省杭州市</td>
</tr>
<tr>
<th>2</th>
<td>NaN</td>
<td>20.0</td>
<td>female</td>
<td>江蘇省蘇州市</td>
</tr>
<tr>
<th>3</th>
<td>sun quan</td>
<td>34.0</td>
<td>Female</td>
<td>福建省泉州市</td>
</tr>
<tr>
<th>4</th>
<td>guan yu</td>
<td>39.0</td>
<td>male</td>
<td>廣東省廣州市</td>
</tr>
</tbody>
</table>

</div>

# 正則的寫法:contains方法

df[df["address"].str.contains("市$")]

<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

</style>

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>age</th>
<th>sex</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>xiao ming</td>
<td>22.0</td>
<td>male</td>
<td>廣東省深圳市</td>
</tr>
<tr>
<th>1</th>
<td>Xiao zhang</td>
<td>19.0</td>
<td>Female</td>
<td>浙江省杭州市</td>
</tr>
<tr>
<th>2</th>
<td>NaN</td>
<td>20.0</td>
<td>female</td>
<td>江蘇省蘇州市</td>
</tr>
<tr>
<th>3</th>
<td>sun quan</td>
<td>34.0</td>
<td>Female</td>
<td>福建省泉州市</td>
</tr>
<tr>
<th>4</th>
<td>guan yu</td>
<td>39.0</td>
<td>male</td>
<td>廣東省廣州市</td>
</tr>
</tbody>
</table>

</div>

缺失值處理

df["name"].str.endswith("g")
0     True
1     True
2      NaN
3    False
4    False
Name: name, dtype: object
df[df["name"].str.endswith("g",na=False)]

<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

</style>

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>age</th>
<th>sex</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>xiao ming</td>
<td>22.0</td>
<td>male</td>
<td>廣東省深圳市</td>
</tr>
<tr>
<th>1</th>
<td>Xiao zhang</td>
<td>19.0</td>
<td>Female</td>
<td>浙江省杭州市</td>
</tr>
</tbody>
</table>

</div>

# 不加na參數則報錯
df[df["name"].str.endswith("g")]
image

報錯的原因很明顯:就是因為name字段下面存在缺失值。當使用了na參數就可以解決

?著作權歸作者所有,轉載或內容合作請聯系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,428評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,024評論 3 413
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,285評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,548評論 1 307
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,328評論 6 404
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,878評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 42,971評論 3 439
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,098評論 0 286
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,616評論 1 331
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,554評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,725評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,243評論 5 355
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 43,971評論 3 345
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,361評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,613評論 1 280
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,339評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,695評論 2 370

推薦閱讀更多精彩內容