OC實現(CNN)卷積神經網絡

簡介


上一篇文章介紹了OC實現softmax來簡單完成MNIST數據的訓練,但是準確率只有90%。最后也提到了可以通過添加CNN來提高準確率。那么CNN是什么?

卷積神經網絡(Convolutional Neural Network, CNN)是一種前饋神經網絡,它的人工神經元可以響應一部分覆蓋范圍內的周圍單元,對于大型圖像處理有出色表現。
卷積神經網絡由一個或多個卷積層和頂端的全連通層(對應經典的神經網絡)組成,同時也包括關聯權重和池化層(pooling layer)。這一結構使得卷積神經網絡能夠利用輸入數據的二維結構。與其他深度學習結構相比,卷積神經網絡在圖像和語音識別方面能夠給出更優的結果。這一模型也可以使用反向傳播算法進行訓練。相比較其他深度、前饋神經網絡,卷積神經網絡需要估計的參數更少,使之成為一種頗具吸引力的深度學習結構。

接下來介紹本人用OC實現的卷積神經網絡。

原理


卷積神經網絡核心在于局部感知、權值共享與池化三個方面。

  • 局部感知:對于一張完整的圖像,通過一個感知器去捕捉它的局部信息,這樣可以降低訓練參數。如1000*1000的圖像,用10*10的感知器,全部掃描,只需要991*991個神經元。
局部感知
  • 權值共享:同一個感知器產生的功能和結構是相同的,是可以相互替代的,那么就可以大幅減少訓練參數。如上面所述,只需要10*10=100個參數訓練。
權值共享
  • 池化:也就是下采樣,對前面1000×1000的圖像經過10×10的卷積核卷積后,得到的是991×991的特征圖,如果使用2×2的池化規模,即每4個點組成的小方塊中,取最大的一個作為輸出,最終得到的是496×496大小的特征圖。
池化

卷積神經網絡前饋流程主要包含:卷積、采樣(池化)、光柵化(全連接)、感知器(激活)。

  • 卷積:實現圖像的局部感知與權值共享,如下圖所示,展示了一個3×3的卷積核在5×5的圖像上做卷積的過程。每個卷積都是一種特征提取方式,就像一個篩子,將圖像中符合條件的部分篩選出來。
卷積
卷積

計算方法如圖所示的卷積核[1,0,1,0,1,0,1,0,1],
第一個4 = 1*1+1*0+1*1+0*1+1*0+1*1+0*1+0*0+1*1。

  • 池化:上面已經介紹過最大池化,還有均值池化(取一個小方塊里的均值),高斯池化與可訓練池化等。

  • 光柵化:主要是將采樣的特征圖排成一個向量。

  • 感知器:常用的有Relu、tanh、sigmoid等,具體的優劣勢、公式很多論文都有分析介紹過,這里就不多述。

卷積神經網絡的反向傳播更新,后面有機會再具體解釋,這里給出幾個公式:

  • 池化:反向傳播損失的時候,最大池化將一點殘差更新到前饋流程中的最大值位置,其他3個位置填0;均值池化,將1個點的殘差平均到4個點上。

  • 卷積:參數公式如下,其中,rot180是將一個矩陣旋轉180度; Oq是連接到該“神經中樞”前的池化層的輸出;對偏置的梯度即 Δp所有元素之和。

    參數更新公式

    損失傳播公式如下:

損失傳播公式

OC實現CNN


上面簡單介紹了CNN的相關知識,接下來看一下具體實現。
首先針對前面的Softmax實現中,要添加上CNN損失反傳等代碼,實現CNN+Softmax如下:

- (void)updateModel:(double *)index currentPos:(int)pos
{
    for (int i = 0; i < _kType; i++) {
        double delta;
        if (i != _randomY[pos]) {
            delta = 0.0 - index[i];
        }
        else
        {
            delta = 1.0 - index[i];
        }
        
        _bias[i] += _descentRate * delta;
        double loss = _descentRate * delta / _randSize;
        double *decay = malloc(sizeof(double) * _dim);
        vDSP_vsmulD(_randomX[pos], 1, &loss, decay, 1, _dim);
        double *backLoss = malloc(sizeof(double) * _dim);
        vDSP_vsmulD((_theta + i * _dim), 1, &loss, backLoss, 1, _dim);
        [_cnn backPropagation:backLoss];
        vDSP_vaddD((_theta + i * _dim), 1, decay, 1, (_theta + i * _dim), 1, _dim);
        if (decay != NULL) {
            free(decay);
            decay = NULL;
        }
    }
}

CNN主體實現代碼如下:

//
//  MLCnn.m
//  MNIST
//
//  Created by Jiao Liu on 9/28/16.
//  Copyright ? 2016 ChangHong. All rights reserved.
//

#import "MLCnn.h"

@implementation MLCnn

+ (double)truncated_normal:(double)mean dev:(double)stddev
{
    double outP = 0.0;
    do {
        static int hasSpare = 0;
        static double spare;
        if (hasSpare) {
            hasSpare = 0;
            outP = mean + stddev * spare;
            continue;
        }
        
        hasSpare = 1;
        static double u,v,s;
        do {
            u = (rand() / ((double) RAND_MAX)) * 2.0 - 1.0;
            v = (rand() / ((double) RAND_MAX)) * 2.0 - 1.0;
            s = u * u + v * v;
        } while ((s >= 1.0) || (s == 0.0));
        s = sqrt(-2.0 * log(s) / s);
        spare = v * s;
        outP = mean + stddev * u * s;
    } while (fabsl(outP) > 2*stddev);
    return outP;
}

+ (double *)relu:(double *)x size:(int)size
{
    double *zero = [MLCnn fillVector:0.0f size:size];
    vDSP_vmaxD(x, 1, zero, 1, x, 1, size);
    if (zero != NULL) {
        free(zero);
        zero = NULL;
    }
    return x;
}

+ (double *)fillVector:(double)num size:(int)size
{
    double *outP = malloc(sizeof(double) * size);
    vDSP_vfillD(&num, outP, 1, size);
    return outP;

}

+ (double)max_pool:(double *)input dim:(int)dim row:(int)row col:(int)col stride:(NSArray *)stride
{
    double maxV = input[dim * [stride[0] intValue] + row * 2 * [stride[1] intValue] + col * 2];
    maxV = MAX(maxV, input[dim * [stride[0] intValue] + (row * 2 + 1) * [stride[1] intValue] + col * 2]);
    maxV = MAX(maxV, input[dim * [stride[0] intValue] + row * 2 * [stride[1] intValue] + col * 2 + 1]);
    maxV = MAX(maxV, input[dim * [stride[0] intValue] + (row * 2 + 1) * [stride[1] intValue] + col * 2 + 1]);
    return maxV;
}

+ (double)mean_pool:(double *)input dim:(int)dim row:(int)row col:(int)col stride:(NSArray *)stride
{
    double sum = input[dim * [stride[0] intValue] + row * 2 * [stride[1] intValue] + col * 2];
    sum += input[dim * [stride[0] intValue] + (row * 2 + 1) * [stride[1] intValue] + col * 2];
    sum += input[dim * [stride[0] intValue] + row * 2 * [stride[1] intValue] + col * 2 + 1];
    sum += input[dim * [stride[0] intValue] + (row * 2 + 1) * [stride[1] intValue] + col * 2 + 1];
    return sum / 4;
}

+ (void)conv_2d:(double *)input inputRow:(int)NR inputCol:(int)NC filter:(double *)filter output:(double *)output filterRow:(int)P filterCol:(int)Q
{
    int outRow = NR - P + 1;
    int outCol = NR - Q + 1;
    for (int i = 0; i < outRow; i++) {
        for (int j = 0; j < outCol; j++) {
            double sum = 0;
            for (int k = 0; k < P; k++) {
                double *inner = malloc(sizeof(double) * Q);
                vDSP_vmulD((input + (i + k) * NR + j), 1, (filter + k * Q), 1, inner, 1, Q);
                vDSP_vswsumD(inner, 1, &sum, 1, 1, Q);
                if (inner != NULL) {
                    free(inner);
                    inner = NULL;
                }
            }
            output[i* outCol + j] = sum;
        }
    }
}

+ (double *)weight_init:(int)size
{
    double *outP = malloc(sizeof(double) * size);
    for (int i = 0; i < size; i++) {
        outP[i] = [MLCnn truncated_normal:0 dev:0.1];
    }
    return outP;
}

+ (double *)bias_init:(int)size
{
    return [MLCnn fillVector:0.1f size:size];
}

# pragma mark - CNN Main

- (id)initWithFilters:(NSArray *)filters fullConnectSize:(int)size row:(int)dimRow col:(int)dimCol keepRate:(double)rate
{
    self = [super init];
    if (self) {
        _filters = filters;
        _connectSize = size;
        _numOfFilter = (int)[filters count];
        _dimRow = dimRow;
        _dimCol = dimCol;
        _keepProb = rate;
        _weight = malloc(sizeof(double) * (_numOfFilter + 1));
        _bias = malloc(sizeof(double) * (_numOfFilter + 1));
        _filteredImage = malloc(sizeof(double) * (_numOfFilter + 1));
        _reluFlag = malloc(sizeof(double) * (_numOfFilter + 1));
        _dropoutMask = malloc(sizeof(double) * (_connectSize));
        int preDim = 1;
        int row = dimRow;
        int col = dimCol;
        for (int i = 0; i < _numOfFilter; i++) {
            _weight[i] = [MLCnn weight_init:[_filters[i][0] intValue] * [_filters[i][1] intValue] * [_filters[i][2] intValue] * preDim];
            _bias[i] = [MLCnn bias_init:[_filters[i][2] intValue]];
            row = (row - ([_filters[i][0] intValue] / 2) * 2) / 2;
            col = (col - ([_filters[i][1] intValue] / 2) * 2) / 2;
            preDim = [_filters[i][2] intValue];
            _filteredImage[i] = NULL;
            _reluFlag[i] = NULL;
        }
        _weight[_numOfFilter] = [MLCnn weight_init:row * col * preDim * _connectSize];
        _bias[_numOfFilter] = [MLCnn bias_init:_connectSize];
        _filteredImage[_numOfFilter] = NULL;
        _reluFlag[_numOfFilter] = NULL;
        _outRow = row;
        _outCol = col;
    }
    return self;
}

- (void)dealloc
{
    if (_weight != NULL) {
        for (int i = 0; i < _numOfFilter + 1; i++) {
            free(_weight[i]);
            _weight[i] = NULL;
        }
        free(_weight);
        _weight = NULL;
    }
    if (_bias != NULL) {
        for (int i = 0; i < _numOfFilter + 1; i++) {
            free(_bias[i]);
            _bias[i] = NULL;
        }
        free(_bias);
        _bias = NULL;
    }
    if (_filteredImage != NULL) {
        for (int i = 1; i < _numOfFilter + 1; i++) {
            free(_filteredImage[i]);
            _filteredImage[i] = NULL;
        }
        free(_filteredImage);
        _filteredImage = NULL;
    }
    if (_reluFlag != NULL) {
        for (int i = 0; i < _numOfFilter + 1; i++) {
            free(_reluFlag[i]);
            _reluFlag[i] = NULL;
        }
        free(_reluFlag);
        _reluFlag = NULL;
    }
    if (_dropoutMask != NULL) {
        free(_dropoutMask);
        _dropoutMask = NULL;
    }
}

- (double *)filterImage:(double *)image state:(BOOL)isTraining
{
    if (_numOfFilter == 0) {
        return image;
    }
    
    int preDim = 1;
    int row = _dimRow;
    int col = _dimCol;
    _filteredImage[0] = image;
    for (int i = 0; i < _numOfFilter; i++) {
        double *conv = [MLCnn fillVector:0.0f size:row * col * [_filters[i][2] intValue]];
        // convolve
        for (int k = 0; k < [_filters[i][2] intValue]; k++) {
            double *inner = malloc(sizeof(double) * row * col);
            for (int m = 0; m < preDim; m++) {
                vDSP_imgfirD((_filteredImage[i] + m * row * col), row, col, (_weight[i] + k * [_filters[i][0] intValue] * [_filters[i][1] intValue] * preDim + m * [_filters[i][0] intValue] * [_filters[i][1] intValue]), inner, [_filters[i][0] intValue], [_filters[i][1] intValue]);
                vDSP_vaddD((conv + k * row * col), 1, inner, 1, (conv + k * row * col), 1, row * col);
            }
            vDSP_vsaddD((conv + k * row * col), 1, &_bias[i][k], (conv + k * row * col), 1, row * col);
            if (inner != NULL) {
                free(inner);
                inner = NULL;
            }
        }
        
        int strideRow = [_filters[i][0] intValue] / 2;
        int strideCol = [_filters[i][1] intValue] / 2;
        row -= strideRow * 2;
        col -= strideCol * 2;
        if (_reluFlag[i] != NULL) {
            free(_reluFlag[i]);
            _reluFlag[i] = NULL;
        }
        _reluFlag[i] = malloc(sizeof(double) * row * col * [_filters[i][2] intValue]);
        for (int k = 0; k < [_filters[i][2] intValue]; k++) {
            for (int r = 0; r < row; ++r)
            {
                for (int c = 0; c < col; ++c)
                {
                    _reluFlag[i][k * row *col + r * col + c] = conv[k * (row + strideRow * 2) * (col + strideCol * 2) + (r + strideRow) * (col + strideCol * 2) + c + strideCol];
                }
                
            }
        }
        // relu
        _reluFlag[i] = [MLCnn relu:_reluFlag[i] size:row * col * [_filters[i][2] intValue]];
        
        // pooling 2*2
        if (_filteredImage[i+1] != NULL) {
            free(_filteredImage[i+1]);
            _filteredImage[i+1] = NULL;
        }
        _filteredImage[i+1] = malloc(sizeof(double) * row * col * [_filters[i][2] intValue] / 4);
        
        for (int k = 0; k < [_filters[i][2] intValue]; k++) {
            for (int m = 0; m < row / 2; m++) {
                for (int n = 0; n < col / 2; n++) {
                    _filteredImage[i+1][k * row * col / 4 + m * col / 2 + n] = [MLCnn mean_pool:_reluFlag[i] dim:k row:m col:n stride:@[[NSNumber numberWithInt:row * col],[NSNumber numberWithInt:col]]];
                }
            }
        }
        
        row /= 2;
        col /= 2;
        preDim = [_filters[i][2] intValue];

        if (conv != NULL) {
            free(conv);
            conv = NULL;
        }
    }
    
    // full connect
    if (_reluFlag[_numOfFilter] != NULL) {
        free(_reluFlag[_numOfFilter]);
        _reluFlag[_numOfFilter] = NULL;
    }
    _reluFlag[_numOfFilter] = malloc(sizeof(double) * _connectSize);
    vDSP_mmulD(_weight[_numOfFilter], 1, _filteredImage[_numOfFilter], 1, _reluFlag[_numOfFilter], 1, _connectSize, 1, row * col * preDim);
    vDSP_vaddD(_reluFlag[_numOfFilter], 1, _bias[_numOfFilter], 1, _reluFlag[_numOfFilter], 1, _connectSize);
    _reluFlag[_numOfFilter] = [MLCnn relu:_reluFlag[_numOfFilter] size:_connectSize];
    
    // dropOut
    if (isTraining) {
        for (int i = 0; i < _connectSize; i++) {
            if ((double)rand()/RAND_MAX > _keepProb) {
                _dropoutMask[i] = 0;
                _reluFlag[_numOfFilter][i] = 0;
            }
            else
            {
                _dropoutMask[i] = 1;
            }
        }
    }
    else
    {
        vDSP_vsmulD(_reluFlag[_numOfFilter], 1, &_keepProb, _reluFlag[_numOfFilter], 1, _connectSize);
    }
    
    return _reluFlag[_numOfFilter];
}

- (void)backPropagation:(double *)loss
{
    int row = _outRow;
    int col = _outCol;
    // dropOut
    vDSP_vmulD(loss, 1, _dropoutMask, 1, loss, 1, _connectSize);
    
    // deRelu
    for (int i = 0; i < _connectSize; i++) {
        if (_reluFlag[_numOfFilter][i] == 0) {
            loss[i] = 0;
        }
    }
    
    // update full-connect layer
    vDSP_vaddD(loss, 1, _bias[_numOfFilter], 1, _bias[_numOfFilter], 1, _connectSize);
    double *flayerLoss = malloc(sizeof(double) * row * col * [_filters[_numOfFilter - 1][2] intValue]);
    double *transWeight = malloc(sizeof(double) * row * col * [_filters[_numOfFilter - 1][2] intValue] * _connectSize);
    vDSP_mtransD(_weight[_numOfFilter], 1, transWeight, 1, row * col * [_filters[_numOfFilter - 1][2] intValue], _connectSize);
    vDSP_mmulD(transWeight, 1, loss, 1, flayerLoss, 1, row * col * [_filters[_numOfFilter - 1][2] intValue], 1, _connectSize);
    
    double *flayerWeight = malloc(sizeof(double) * row * col * [_filters[_numOfFilter - 1][2] intValue] * _connectSize);
    vDSP_mmulD(loss, 1, _filteredImage[_numOfFilter], 1, flayerWeight, 1, _connectSize, row * col * [_filters[_numOfFilter - 1][2] intValue], 1);
    vDSP_vaddD(_weight[_numOfFilter], 1, flayerWeight, 1, _weight[_numOfFilter], 1, row * col * [_filters[_numOfFilter - 1][2] intValue] * _connectSize);
    
    if (loss != NULL) {
        free(loss);
        loss = NULL;
    }
    if (flayerWeight != NULL) {
        free(flayerWeight);
        flayerWeight = NULL;
    }
    if (transWeight != NULL) {
        free(transWeight);
        transWeight = NULL;
    }

    // update Conv & pooling layer
    double *convBackLoss = flayerLoss;
    for (int i = _numOfFilter - 1; i >= 0; i--) {
        // unsampling
        row *= 2;
        col *= 2;
        int preDim = i > 0 ? [_filters[i-1][2] intValue] : 1;
        double *unsample = malloc(sizeof(double) * row * col * [_filters[i][2] intValue]);
        for (int k = 0; k < [_filters[i][2] intValue]; k++) {
            for (int m = 0; m < row / 2; m++) {
                for (int n = 0; n < col / 2; n++) {
                    unsample[k*row*col + m*2*col + n*2] = unsample[k*row*col + m*2*col + n*2 + 1] = unsample[k*row*col + (m*2+1)*col + n*2] = unsample[k*row*col + (m*2+1)*col + n*2 + 1] = convBackLoss[k*row*col/4 + m*col/2 + n] / 4;
                }
            }
        }
        // deRelu
        for (int k = 0; k < row * col * [_filters[i][2] intValue]; k++) {
            if (_reluFlag[i][k] == 0) {
                unsample[k] = 0;
            }
        }

        // update conv bias
        for (int k = 0; k < [_filters[i][2] intValue]; k++) {
            double biasLoss = 0;
            for (int m = 0; m < row / 2; m++) {
                for (int n = 0; n < col / 2; n++) {
                    biasLoss += convBackLoss[k*row*col/4 + m*col/2 + n];
                }
            }
            _bias[i][k] += biasLoss;
        }
        
        int strideRow = [_filters[i][0] intValue] / 2;
        int strideCol = [_filters[i][1] intValue] / 2;

        if (i > 0) { //if not the first layer calculate back loss
            if (convBackLoss != NULL) {
                free(convBackLoss);
                convBackLoss = NULL;
            }
            convBackLoss = [MLCnn fillVector:0.0f size:(row + strideRow * 2) * (col + strideCol * 2) * preDim];
            double *curLoss = [MLCnn fillVector:0.0f size:(row + strideRow * 2) * (col + strideCol * 2) * [_filters[i][2] intValue]];
            for (int k = 0; k < [_filters[i][2] intValue]; k++) {
                for (int p = 0; p < row; p++) {
                    for (int q = 0; q < col; q++) {
                        curLoss[k * (row + strideRow * 2) * (col + strideCol * 2) + (p + strideRow) * (col + strideCol * 2) + q + strideCol] = unsample[k * row * col + p * col + q];
                    }
                }
            }
            
            // Δq′=(∑p∈CΔp?frot180(Θp))°?′(Oq′)
            for (int k = 0; k < preDim; k++) {
                double *inner = malloc(sizeof(double) * (row + strideRow * 2) * (col + strideCol * 2));
                for (int m = 0; m < [_filters[i][2] intValue]; m++) {
                    double *reverseWeight = [MLCnn fillVector:0.0f size:[_filters[i][0] intValue] * [_filters[i][1] intValue]];
                    vDSP_vaddD(reverseWeight, 1, (_weight[i] + m * [_filters[i][0] intValue] * [_filters[i][1] intValue] * preDim + k * [_filters[i][0] intValue] * [_filters[i][1] intValue]), 1, reverseWeight, 1, [_filters[i][0] intValue] * [_filters[i][1] intValue]);
                    vDSP_vrvrsD(reverseWeight, 1, [_filters[i][0] intValue] * [_filters[i][1] intValue]);
                    vDSP_imgfirD((curLoss + m * (row + strideRow * 2) * (col + strideCol * 2)), row + strideRow * 2, col + strideCol * 2, reverseWeight, inner, [_filters[i][0] intValue], [_filters[i][1] intValue]);
                    vDSP_vaddD((convBackLoss + k * (row + strideRow * 2) * (col + strideCol * 2)), 1, inner, 1, (convBackLoss + k * (row + strideRow * 2) * (col + strideCol * 2)), 1, (row + strideRow * 2) * (col + strideCol * 2));
                    if (reverseWeight != NULL) {
                        free(reverseWeight);
                        reverseWeight = NULL;
                    }
                }
                if (inner != NULL) {
                    free(inner);
                    inner = NULL;
                }
            }
            if (curLoss != NULL) {
                free(curLoss);
                curLoss = NULL;
            }
        }

        // update conv weight
        for (int k = 0; k < [_filters[i][2] intValue]; k++) {
//            int strideRow = [_filters[i][0] intValue] / 2;
//            int strideCol = [_filters[i][1] intValue] / 2;
//            double *curLoss = malloc(sizeof(double) * (row - strideRow * 2) * (col - strideCol * 2));
//            for (int p = 0; p < row - strideRow * 2; p++) {
//                for (int q = 0; q < col - strideCol * 2; q++) {
//                    curLoss[p * (col - strideCol * 2) + q] = unsample[k * row * col + (p + strideRow) * col + q + strideCol];
//                }
//            }
//            vDSP_vrvrsD(curLoss, 1, (row - strideRow * 2) * (col - strideCol * 2));
            vDSP_vrvrsD((unsample + k * row * col), 1, row * col);
            
            for (int m = 0; m < preDim; m++) {
                double *inner = malloc(sizeof(double) * (row + strideRow * 2) * (col + strideCol * 2));
                vDSP_imgfirD((_filteredImage[i] + m * (row + strideRow * 2) * (col + strideCol * 2)), (row + strideRow * 2), (col + strideCol * 2), (unsample + k * row * col), inner, row, col);
                double *weightLoss = malloc(sizeof(double) * [_filters[i][0] intValue] * [_filters[i][1] intValue]);
                int P = row / 2;
                int Q = col / 2;
                for (int r = P; r <= (row + strideRow * 2) - P; ++r)
                {
                    for (int c = Q; c <= (col + strideCol * 2) - Q; ++c)
                    {
                        weightLoss[(r-P)*[_filters[i][1] intValue] + (c-Q)] = inner[r*col + c];
                    }
                }
//                [MLCnn conv_2d:(_filteredImage[i] + m * (row + strideRow * 2) * (col + strideCol * 2)) inputRow:(row + strideRow * 2) inputCol:(col + strideCol * 2) filter:(unsample + k * row * col) output:weightLoss filterRow:row filterCol:col];
                vDSP_vrvrsD(weightLoss, 1, [_filters[i][0] intValue] * [_filters[i][1] intValue]);
                vDSP_vaddD((_weight[i] + k * [_filters[i][0] intValue] * [_filters[i][1] intValue] * preDim + m * [_filters[i][0] intValue] * [_filters[i][1] intValue]), 1, weightLoss, 1, (_weight[i] + k * [_filters[i][0] intValue] * [_filters[i][1] intValue] * preDim + m * [_filters[i][0] intValue] * [_filters[i][1] intValue]), 1, [_filters[i][0] intValue] * [_filters[i][1] intValue]);
                
                if (weightLoss != NULL) {
                    free(weightLoss);
                    weightLoss = NULL;
                }
                if (inner != NULL) {
                    free(inner);
                    inner = NULL;
                }
            }
        }

        row += strideRow * 2;
        col += strideCol * 2;
        if (unsample != NULL) {
            free(unsample);
            unsample = NULL;
        }
         
    }
 
    if (convBackLoss != NULL) {
        free(convBackLoss);
        convBackLoss = NULL;
    }
}

@end

這里我選用的激活函數是Relu,卷積核參數初始化用的是正態分布隨機95%區間內數字填充,池化選擇平均池化,也實現最大池化的方法。

最后我選擇卷積核5*5*10,5*5*20只迭代1000次的一個輸出結果如下:

訓練結果

正確率比僅僅使用Softmax有明顯提高。

結語


以上就是OC實現的一個簡單的卷積神經網絡,有興趣的朋友可以下載代碼,嘗試改變卷積核、迭代參數等,有可能得到更高的正確率??。

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,156評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,401評論 3 415
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,069評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,873評論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,635評論 6 408
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,128評論 1 323
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,203評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,365評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,881評論 1 334
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,733評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,935評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,475評論 5 358
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,172評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,582評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,821評論 1 282
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,595評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,908評論 2 372

推薦閱讀更多精彩內容