架構(gòu)師眼中的高并發(fā)架構(gòu)

前言

高并發(fā)經(jīng)常會(huì)發(fā)生在有大活躍用戶量,用戶高聚集的業(yè)務(wù)場(chǎng)景中,如:秒殺活動(dòng),定時(shí)領(lǐng)取紅包等。

為了讓業(yè)務(wù)可以流暢的運(yùn)行并且給用戶一個(gè)好的交互體驗(yàn),我們需要根據(jù)業(yè)務(wù)場(chǎng)景預(yù)估達(dá)到的并發(fā)量等因素,來(lái)設(shè)計(jì)適合自己業(yè)務(wù)場(chǎng)景的高并發(fā)處理方案。

在電商相關(guān)產(chǎn)品開(kāi)發(fā)的這些年,我有幸的遇到了并發(fā)下的各種坑,這一路摸爬滾打過(guò)來(lái)有著不少的血淚史,這里進(jìn)行的總結(jié),作為自己的歸檔記錄,同時(shí)分享給大家。

服務(wù)器架構(gòu)

業(yè)務(wù)從發(fā)展的初期到逐漸成熟,服務(wù)器架構(gòu)也是從相對(duì)單一到集群,再到分布式服務(wù)。

一個(gè)可以支持高并發(fā)的服務(wù)少不了好的服務(wù)器架構(gòu),需要有均衡負(fù)載,數(shù)據(jù)庫(kù)需要主從集群,nosql緩存需要主從集群,靜態(tài)文件需要上傳cdn,這些都是能讓業(yè)務(wù)程序流暢運(yùn)行的強(qiáng)大后盾。

服務(wù)器這塊多是需要運(yùn)維人員來(lái)配合搭建,具體我就不多說(shuō)了,點(diǎn)到為止。

大致需要用到的服務(wù)器架構(gòu)如下:

--服務(wù)器

--均衡負(fù)載(如:nginx,阿里云SLB)

--資源監(jiān)控

--分布式

--數(shù)據(jù)庫(kù)

--主從分離,集群

--DBA 表優(yōu)化,索引優(yōu)化,等

--分布式

--nosql

--redis

--主從分離,集群

--mongodb

--主從分離,集群

--memcache

--主從分離,集群

--cdn

--html

--css

-js

--image

并發(fā)測(cè)試

高并發(fā)相關(guān)的業(yè)務(wù),需要進(jìn)行并發(fā)的測(cè)試,通過(guò)大量的數(shù)據(jù)分析評(píng)估出整個(gè)架構(gòu)可以支撐的并發(fā)量。

測(cè)試高并發(fā)可以使用第三方服務(wù)器或者自己測(cè)試服務(wù)器,利用測(cè)試工具進(jìn)行并發(fā)請(qǐng)求測(cè)試,分析測(cè)試數(shù)據(jù)得到可以支撐并發(fā)數(shù)量的評(píng)估,這個(gè)可以作為一個(gè)預(yù)警參考,俗話說(shuō)知己自彼百戰(zhàn)不殆。

第三方服務(wù):

--阿里云性能測(cè)試

并發(fā)測(cè)試工具:

--Apache JMeter

--Visual Studio性能負(fù)載測(cè)試

--Microsoft Web Application Stress Tool

實(shí)戰(zhàn)方案

通用方案

日用戶流量大,但是比較分散,偶爾會(huì)有用戶高聚的情況;

場(chǎng)景: 用戶簽到,用戶中心,用戶訂單,等

服務(wù)器架構(gòu)圖:

說(shuō)明:

場(chǎng)景中的這些業(yè)務(wù)基本是用戶進(jìn)入APP后會(huì)操作到的,除了活動(dòng)日(618,雙11,等),這些業(yè)務(wù)的用戶量都不會(huì)高聚集,同時(shí)這些業(yè)務(wù)相關(guān)的表都是大數(shù)據(jù)表,業(yè)務(wù)多是查詢操作,所以我們需要減少用戶直接命中DB的查詢;優(yōu)先查詢緩存,如果緩存不存在,再進(jìn)行DB查詢,將查詢結(jié)果緩存起來(lái)。

更新用戶相關(guān)緩存需要分布式存儲(chǔ),比如使用用戶ID進(jìn)行hash分組,把用戶分布到不同的緩存中,這樣一個(gè)緩存集合的總量不會(huì)很大,不會(huì)影響查詢效率。

方案如:

用戶簽到獲取積分

計(jì)算出用戶分布的key,redis hash中查找用戶今日簽到信息

如果查詢到簽到信息,返回簽到信息

如果沒(méi)有查詢到,DB查詢今日是否簽到過(guò),如果有簽到過(guò),就把簽到信息同步redis緩存。

如果DB中也沒(méi)有查詢到今日的簽到記錄,就進(jìn)行簽到邏輯,操作DB添加今日簽到記錄,添加簽到積分(這整個(gè)DB操作是一個(gè)事務(wù))

緩存簽到信息到redis,返回簽到信息

注意這里會(huì)有并發(fā)情況下的邏輯問(wèn)題,如:一天簽到多次,發(fā)放多次積分給用戶。

用戶訂單

這里我們只緩存用戶第一頁(yè)的訂單信息,一頁(yè)40條數(shù)據(jù),用戶一般也只會(huì)看第一頁(yè)的訂單數(shù)據(jù)

用戶訪問(wèn)訂單列表,如果是第一頁(yè)讀緩存,如果不是讀DB

計(jì)算出用戶分布的key,redis hash中查找用戶訂單信息

如果查詢到用戶訂單信息,返回訂單信息

如果不存在就進(jìn)行DB查詢第一頁(yè)的訂單數(shù)據(jù),然后緩存redis,返回訂單信息

用戶中心

計(jì)算出用戶分布的key,redis hash中查找用戶訂單信息

如果查詢到用戶信息,返回用戶信息

如果不存在進(jìn)行用戶DB查詢,然后緩存redis,返回用戶信息

其他業(yè)務(wù)

上面例子多是針對(duì)用戶存儲(chǔ)緩存,如果是公用的緩存數(shù)據(jù)需要注意一些問(wèn)題,如下

注意公用的緩存數(shù)據(jù)需要考慮并發(fā)下的可能會(huì)導(dǎo)致大量命中DB查詢,可以使用管理后臺(tái)更新緩存,或者DB查詢的鎖住操作。

以上例子是一個(gè)相對(duì)簡(jiǎn)單的高并發(fā)架構(gòu),并發(fā)量不是很高的情況可以很好的支撐,但是隨著業(yè)務(wù)的壯大,用戶并發(fā)量增加,我們的架構(gòu)也會(huì)進(jìn)行不斷的優(yōu)化和演變,比如對(duì)業(yè)務(wù)進(jìn)行服務(wù)化,每個(gè)服務(wù)有自己的并發(fā)架構(gòu),自己的均衡服務(wù)器,分布式數(shù)據(jù)庫(kù),nosql主從集群,如:用戶服務(wù)、訂單服務(wù);

消息隊(duì)列

秒殺、秒搶等活動(dòng)業(yè)務(wù),用戶在瞬間涌入產(chǎn)生高并發(fā)請(qǐng)求

場(chǎng)景:定時(shí)領(lǐng)取紅包,等

服務(wù)器架構(gòu)圖:

說(shuō)明:

場(chǎng)景中的定時(shí)領(lǐng)取是一個(gè)高并發(fā)的業(yè)務(wù),像秒殺活動(dòng)用戶會(huì)在到點(diǎn)的時(shí)間涌入,DB瞬間就接受到一記暴擊,hold不住就會(huì)宕機(jī),然后影響整個(gè)業(yè)務(wù);

像這種不是只有查詢的操作并且會(huì)有高并發(fā)的插入或者更新數(shù)據(jù)的業(yè)務(wù),前面提到的通用方案就無(wú)法支撐,并發(fā)的時(shí)候都是直接命中DB;

設(shè)計(jì)這塊業(yè)務(wù)的時(shí)候就會(huì)使用消息隊(duì)列的,可以將參與用戶的信息添加到消息隊(duì)列中,然后再寫個(gè)多線程程序去消耗隊(duì)列,給隊(duì)列中的用戶發(fā)放紅包;

方案如:

定時(shí)領(lǐng)取紅包

一般習(xí)慣使用 redis的 list

當(dāng)用戶參與活動(dòng),將用戶參與信息push到隊(duì)列中

然后寫個(gè)多線程程序去pop數(shù)據(jù),進(jìn)行發(fā)放紅包的業(yè)務(wù)

這樣可以支持高并發(fā)下的用戶可以正常的參與活動(dòng),并且避免數(shù)據(jù)庫(kù)服務(wù)器宕機(jī)的危險(xiǎn)

附加:

通過(guò)消息隊(duì)列可以做很多的服務(wù)。

如:定時(shí)短信發(fā)送服務(wù),使用sset(sorted set),發(fā)送時(shí)間戳作為排序依據(jù),短信數(shù)據(jù)隊(duì)列根據(jù)時(shí)間升序,然后寫個(gè)程序定時(shí)循環(huán)去讀取sset隊(duì)列中的第一條,當(dāng)前時(shí)間是否超過(guò)發(fā)送時(shí)間,如果超過(guò)就進(jìn)行短信發(fā)送。

一級(jí)緩存

高并發(fā)請(qǐng)求連接緩存服務(wù)器超出服務(wù)器能夠接收的請(qǐng)求連接量,部分用戶出現(xiàn)建立連接超時(shí)無(wú)法讀取到數(shù)據(jù)的問(wèn)題;

因此需要有個(gè)方案當(dāng)高并發(fā)時(shí)候時(shí)候可以減少命中緩存服務(wù)器;

這時(shí)候就出現(xiàn)了一級(jí)緩存的方案,一級(jí)緩存就是使用站點(diǎn)服務(wù)器緩存去存儲(chǔ)數(shù)據(jù),注意只存儲(chǔ)部分請(qǐng)求量大的數(shù)據(jù),并且緩存的數(shù)據(jù)量要控制,不能過(guò)分的使用站點(diǎn)服務(wù)器的內(nèi)存而影響了站點(diǎn)應(yīng)用程序的正常運(yùn)行,一級(jí)緩存需要設(shè)置秒單位的過(guò)期時(shí)間,具體時(shí)間根據(jù)業(yè)務(wù)場(chǎng)景設(shè)定,目的是當(dāng)有高并發(fā)請(qǐng)求的時(shí)候可以讓數(shù)據(jù)的獲取命中到一級(jí)緩存,而不用連接緩存nosql數(shù)據(jù)服務(wù)器,減少nosql數(shù)據(jù)服務(wù)器的壓力

比如APP首屏商品數(shù)據(jù)接口,這些數(shù)據(jù)是公共的不會(huì)針對(duì)用戶自定義,而且這些數(shù)據(jù)不會(huì)頻繁的更新,像這種接口的請(qǐng)求量比較大就可以加入一級(jí)緩存;

服務(wù)器架構(gòu)圖:

合理的規(guī)范和使用nosql緩存數(shù)據(jù)庫(kù),根據(jù)業(yè)務(wù)拆分緩存數(shù)據(jù)庫(kù)的集群,這樣基本可以很好支持業(yè)務(wù),一級(jí)緩存畢竟是使用站點(diǎn)服務(wù)器緩存所以還是要善用。

靜態(tài)化數(shù)據(jù)

高并發(fā)請(qǐng)求數(shù)據(jù)不變化的情況下如果可以不請(qǐng)求自己的服務(wù)器獲取數(shù)據(jù)那就可以減少服務(wù)器的資源壓力。

對(duì)于更新頻繁度不高,并且數(shù)據(jù)允許短時(shí)間內(nèi)的延遲,可以通過(guò)數(shù)據(jù)靜態(tài)化成JSON,XML,HTML等數(shù)據(jù)文件上傳CDN,在拉取數(shù)據(jù)的時(shí)候優(yōu)先到CDN拉取,如果沒(méi)有獲取到數(shù)據(jù)再?gòu)木彺妫瑪?shù)據(jù)庫(kù)中獲取,當(dāng)管理人員操作后臺(tái)編輯數(shù)據(jù)再重新生成靜態(tài)文件上傳同步到CDN,這樣在高并發(fā)的時(shí)候可以使數(shù)據(jù)的獲取命中在CDN服務(wù)器上。

CDN節(jié)點(diǎn)同步有一定的延遲性,所以找一個(gè)靠譜的CDN服務(wù)器商也很重要

其他方案

對(duì)于更新頻繁度不高的數(shù)據(jù),APP,PC瀏覽器,可以緩存數(shù)據(jù)到本地,然后每次請(qǐng)求接口的時(shí)候上傳當(dāng)前緩存數(shù)據(jù)的版本號(hào),服務(wù)端接收到版本號(hào)判斷版本號(hào)與最新數(shù)據(jù)版本號(hào)是否一致,如果不一樣就進(jìn)行最新數(shù)據(jù)的查詢并返回最新數(shù)據(jù)和最新版本號(hào),如果一樣就返回狀態(tài)碼告知數(shù)據(jù)已經(jīng)是最新。減少服務(wù)器壓力:資源、帶寬

針對(duì)上面的技術(shù)我特意整理了一下,有很多技術(shù)不是靠幾句話能講清楚,所以干脆找朋友錄制了一些視頻,很多問(wèn)題其實(shí)答案很簡(jiǎn)單,但是背后的思考和邏輯不簡(jiǎn)單,要做到知其然還要知其所以然。如果想學(xué)習(xí)Java工程化、高性能及分布式、深入淺出。微服務(wù)、Spring,MyBatis,Netty源碼分析的朋友可以加我的Java進(jìn)階群:433540541,群里有阿里大牛直播講解技術(shù),以及Java大型互聯(lián)網(wǎng)技術(shù)的視頻免費(fèi)分享給大家。

分層,分割,分布式

大型網(wǎng)站要很好支撐高并發(fā),這是需要長(zhǎng)期的規(guī)劃設(shè)計(jì)

在初期就需要把系統(tǒng)進(jìn)行分層,在發(fā)展過(guò)程中把核心業(yè)務(wù)進(jìn)行拆分成模塊單元,根據(jù)需求進(jìn)行分布式部署,可以進(jìn)行獨(dú)立團(tuán)隊(duì)維護(hù)開(kāi)發(fā)。

--分層

將系統(tǒng)在橫向維度上切分成幾個(gè)部分,每個(gè)部門負(fù)責(zé)一部分相對(duì)簡(jiǎn)單并比較單一的職責(zé),然后通過(guò)上層對(duì)下層的依賴和調(diào)度組成一個(gè)完整的系統(tǒng)

比如把電商系統(tǒng)分成:應(yīng)用層,服務(wù)層,數(shù)據(jù)層。(具體分多少個(gè)層次根據(jù)自己的業(yè)務(wù)場(chǎng)景)

應(yīng)用層:網(wǎng)站首頁(yè),用戶中心,商品中心,購(gòu)物車,紅包業(yè)務(wù),活動(dòng)中心等,負(fù)責(zé)具體業(yè)務(wù)和視圖展示

服務(wù)層:訂單服務(wù),用戶管理服務(wù),紅包服務(wù),商品服務(wù)等,為應(yīng)用層提供服務(wù)支持

數(shù)據(jù)層:關(guān)系數(shù)據(jù)庫(kù),nosql數(shù)據(jù)庫(kù) 等,提供數(shù)據(jù)存儲(chǔ)查詢服務(wù)

分層架構(gòu)是邏輯上的,在物理部署上可以部署在同一臺(tái)物理機(jī)器上,但是隨著網(wǎng)站業(yè)務(wù)的發(fā)展,必然需要對(duì)已經(jīng)分層的模塊分離部署,分別部署在不同的服務(wù)器上,使網(wǎng)站可以支撐更多用戶訪問(wèn)

--分割

在縱向方面對(duì)業(yè)務(wù)進(jìn)行切分,將一塊相對(duì)復(fù)雜的業(yè)務(wù)分割成不同的模塊單元

包裝成高內(nèi)聚低耦合的模塊不僅有助于軟件的開(kāi)發(fā)維護(hù),也便于不同模塊的分布式部署,提高網(wǎng)站的并發(fā)處理能力和功能擴(kuò)展

比如用戶中心可以分割成:賬戶信息模塊,訂單模塊,充值模塊,提現(xiàn)模塊,優(yōu)惠券模塊等

--分布式

分布式應(yīng)用和服務(wù),將分層或者分割后的業(yè)務(wù)分布式部署,獨(dú)立的應(yīng)用服務(wù)器,數(shù)據(jù)庫(kù),緩存服務(wù)器

當(dāng)業(yè)務(wù)達(dá)到一定用戶量的時(shí)候,再進(jìn)行服務(wù)器均衡負(fù)載,數(shù)據(jù)庫(kù),緩存主從集群

分布式靜態(tài)資源,比如:靜態(tài)資源上傳cdn

分布式計(jì)算,比如:使用hadoop進(jìn)行大數(shù)據(jù)的分布式計(jì)算

分布式數(shù)據(jù)和存儲(chǔ),比如:各分布節(jié)點(diǎn)根據(jù)哈希算法或其他算法分散存儲(chǔ)數(shù)據(jù)

網(wǎng)站分層-圖1來(lái)自網(wǎng)絡(luò)

集群

對(duì)于用戶訪問(wèn)集中的業(yè)務(wù)獨(dú)立部署服務(wù)器,應(yīng)用服務(wù)器,數(shù)據(jù)庫(kù),nosql數(shù)據(jù)庫(kù)。 核心業(yè)務(wù)基本上需要搭建集群,即多臺(tái)服務(wù)器部署相同的應(yīng)用構(gòu)成一個(gè)集群,通過(guò)負(fù)載均衡設(shè)備共同對(duì)外提供服務(wù), 服務(wù)器集群能夠?yàn)橄嗤姆?wù)提供更多的并發(fā)支持,因此當(dāng)有更多的用戶訪問(wèn)時(shí),只需要向集群中加入新的機(jī)器即可, 另外可以實(shí)現(xiàn)當(dāng)其中的某臺(tái)服務(wù)器發(fā)生故障時(shí),可以通過(guò)負(fù)載均衡的失效轉(zhuǎn)移機(jī)制將請(qǐng)求轉(zhuǎn)移至集群中其他的服務(wù)器上,因此可以提高系統(tǒng)的可用性

應(yīng)用服務(wù)器集群

nginx 反向代理

slb

… …

(關(guān)系/nosql)數(shù)據(jù)庫(kù)集群

主從分離,從庫(kù)集群

通過(guò)反向代理均衡負(fù)載-圖2來(lái)自網(wǎng)絡(luò)

異步

在高并發(fā)業(yè)務(wù)中如果涉及到數(shù)據(jù)庫(kù)操作,主要壓力都是在數(shù)據(jù)庫(kù)服務(wù)器上面,雖然使用主從分離,但是數(shù)據(jù)庫(kù)操作都是在主庫(kù)上操作,單臺(tái)數(shù)據(jù)庫(kù)服務(wù)器連接池允許的最大連接數(shù)量是有限的

當(dāng)連接數(shù)量達(dá)到最大值的時(shí)候,其他需要連接數(shù)據(jù)操作的請(qǐng)求就需要等待有空閑的連接,這樣高并發(fā)的時(shí)候很多請(qǐng)求就會(huì)出現(xiàn)connection time out的情況

那么像這種高并發(fā)業(yè)務(wù)我們要如何設(shè)計(jì)開(kāi)發(fā)方案可以降低數(shù)據(jù)庫(kù)服務(wù)器的壓力呢?

--如:

自動(dòng)彈窗簽到,雙11跨0點(diǎn)的時(shí)候并發(fā)請(qǐng)求簽到接口

雙11搶紅包活動(dòng)

雙11訂單入庫(kù)

--設(shè)計(jì)考慮:

逆向思維,壓力在數(shù)據(jù)庫(kù),那業(yè)務(wù)接口就不進(jìn)行數(shù)據(jù)庫(kù)操作不就沒(méi)壓力了

數(shù)據(jù)持久化是否允許延遲?

如何讓業(yè)務(wù)接口不直接操作DB,又可以讓數(shù)據(jù)持久化?

--方案設(shè)計(jì):

像這種涉及數(shù)據(jù)庫(kù)操作的高并發(fā)的業(yè)務(wù),就要考慮使用異步了

客戶端發(fā)起接口請(qǐng)求,服務(wù)端快速響應(yīng),客戶端展示結(jié)果給用戶,數(shù)據(jù)庫(kù)操作通過(guò)異步同步

--如何實(shí)現(xiàn)異步同步?

使用消息隊(duì)列,將入庫(kù)的內(nèi)容enqueue到消息隊(duì)列中,業(yè)務(wù)接口快速響應(yīng)給用戶結(jié)果(可以溫馨提示高峰期延遲到賬)

然后再寫個(gè)獨(dú)立程序從消息隊(duì)列dequeue數(shù)據(jù)出來(lái)進(jìn)行入庫(kù)操作,入庫(kù)成功后刷新用戶相關(guān)緩存,如果入庫(kù)失敗記錄日志,方便反饋查詢和重新持久化

這樣一來(lái)數(shù)據(jù)庫(kù)操作就只有一個(gè)程序(多線程)來(lái)完成,不會(huì)給數(shù)據(jù)帶來(lái)壓力

補(bǔ)充:

消息隊(duì)列除了可以用在高并發(fā)業(yè)務(wù),其他只要有相同需求的業(yè)務(wù)也是可以使用,如:短信發(fā)送中間件等

高并發(fā)下異步持久化數(shù)據(jù)可能會(huì)影響用戶的體驗(yàn),可以通過(guò)可配置的方式,或者自動(dòng)化監(jiān)控資源消耗來(lái)切換時(shí)時(shí)或者使用異步,這樣在正常流量的情況下可以使用時(shí)時(shí)操作數(shù)據(jù)庫(kù)來(lái)提高用戶體驗(yàn)

異步同時(shí)也可以指編程上的異步函數(shù),異步線程,在有的時(shí)候可以使用異步操作,把不需要等待結(jié)果的操作放到異步中,然后繼續(xù)后面的操作,節(jié)省了等待的這部分操作的時(shí)間

緩存

高并發(fā)業(yè)務(wù)接口多數(shù)都是進(jìn)行業(yè)務(wù)數(shù)據(jù)的查詢,如:商品列表,商品信息,用戶信息,紅包信息等,這些數(shù)據(jù)都是不會(huì)經(jīng)常變化,并且持久化在數(shù)據(jù)庫(kù)中

高并發(fā)的情況下直接連接從庫(kù)做查詢操作,多臺(tái)從庫(kù)服務(wù)器也抗不住這么大量的連接請(qǐng)求數(shù)(前面說(shuō)過(guò),單臺(tái)數(shù)據(jù)庫(kù)服務(wù)器允許的最大連接數(shù)量是有限的)

那么我們?cè)谶@種高并發(fā)的業(yè)務(wù)接口要如何設(shè)計(jì)呢?

設(shè)計(jì)考慮:

還是逆向思維,壓力在數(shù)據(jù)庫(kù),那么我們就不進(jìn)行數(shù)據(jù)庫(kù)查詢

數(shù)據(jù)不經(jīng)常變化,我們?yōu)樯兑恢辈樵僁B?

數(shù)據(jù)不變化客戶端為啥要向服務(wù)器請(qǐng)求返回一樣的數(shù)據(jù)?

方案設(shè)計(jì):

數(shù)據(jù)不經(jīng)常變化,我們可以把數(shù)據(jù)進(jìn)行緩存,緩存的方式有很多種,一般的:應(yīng)用服務(wù)器直接Cache內(nèi)存,主流的:存儲(chǔ)在memcache、redis內(nèi)存數(shù)據(jù)庫(kù)

Cache是直接存儲(chǔ)在應(yīng)用服務(wù)器中,讀取速度快,內(nèi)存數(shù)據(jù)庫(kù)服務(wù)器允許連接數(shù)可以支撐到很大,而且數(shù)據(jù)存儲(chǔ)在內(nèi)存,讀取速度快,再加上主從集群,可以支撐很大的并發(fā)查詢

根據(jù)業(yè)務(wù)情景,使用配合客戶端本地存,如果我們數(shù)據(jù)內(nèi)容不經(jīng)常變化,為啥要一直請(qǐng)求服務(wù)器獲取相同數(shù)據(jù),可以通過(guò)匹配數(shù)據(jù)版本號(hào),如果版本號(hào)不一樣接口重新查詢緩存返回?cái)?shù)據(jù)和版本號(hào),如果一樣則不查詢數(shù)據(jù)直接響應(yīng)

這樣不僅可以提高接口響應(yīng)速度,也可以節(jié)約服務(wù)器帶寬,雖然有些服務(wù)器帶寬是按流量計(jì)費(fèi),但是也不是絕對(duì)無(wú)限的,在高并發(fā)的時(shí)候服務(wù)器帶寬也可能導(dǎo)致請(qǐng)求響應(yīng)慢的問(wèn)題

補(bǔ)充:

緩存同時(shí)也指靜態(tài)資源客戶端緩存

cdn緩存,靜態(tài)資源通過(guò)上傳cdn,cdn節(jié)點(diǎn)緩存我們的靜態(tài)資源,減少服務(wù)器壓力

面向服務(wù)

SOA面向服務(wù)架構(gòu)設(shè)計(jì)

微服務(wù)更細(xì)粒度服務(wù)化,一系列的獨(dú)立的服務(wù)共同組成系統(tǒng)

使用服務(wù)化思維,將核心業(yè)務(wù)或者通用的業(yè)務(wù)功能抽離成服務(wù)獨(dú)立部署,對(duì)外提供接口的方式提供功能。

最理想化的設(shè)計(jì)是可以把一個(gè)復(fù)雜的系統(tǒng)抽離成多個(gè)服務(wù),共同組成系統(tǒng)的業(yè)務(wù),優(yōu)點(diǎn):松耦合,高可用性,高伸縮性,易維護(hù)。

通過(guò)面向服務(wù)化設(shè)計(jì),獨(dú)立服務(wù)器部署,均衡負(fù)載,數(shù)據(jù)庫(kù)集群,可以讓服務(wù)支撐更高的并發(fā)

服務(wù)例子:

用戶行為跟蹤記錄統(tǒng)計(jì)

說(shuō)明:

通過(guò)上報(bào)應(yīng)用模塊,操作事件,事件對(duì)象,等數(shù)據(jù),記錄用戶的操作行為

比如:記錄用戶在某個(gè)商品模塊,點(diǎn)擊了某一件商品,或者瀏覽了某一件商品

背景:

由于服務(wù)需要記錄用戶的各種操作行為,并且可以重復(fù)上報(bào),準(zhǔn)備接入服務(wù)的業(yè)務(wù)又是核心業(yè)務(wù)的用戶行為跟蹤,所以請(qǐng)求量很大,高峰期會(huì)產(chǎn)生大量并發(fā)請(qǐng)求。

架構(gòu):

nodejs WEB應(yīng)用服務(wù)器均衡負(fù)載

redis主從集群

mysql主

nodejs+express+ejs+redis+mysql

服務(wù)端采用nodejs,nodejs是單進(jìn)程(PM2根據(jù)cpu核數(shù)開(kāi)啟多個(gè)工作進(jìn)程),采用事件驅(qū)動(dòng)機(jī)制,適合I/O密集型業(yè)務(wù),處理高并發(fā)能力強(qiáng)

業(yè)務(wù)設(shè)計(jì):

并發(fā)量大,所以不能直接入庫(kù),采用:異步同步數(shù)據(jù),消息隊(duì)列

請(qǐng)求接口上報(bào)數(shù)據(jù),接口將上報(bào)數(shù)據(jù)push到redis的list隊(duì)列中

nodejs寫入庫(kù)腳本,循環(huán)pop redis list數(shù)據(jù),將數(shù)據(jù)存儲(chǔ)入庫(kù),并進(jìn)行相關(guān)統(tǒng)計(jì)Update,無(wú)數(shù)據(jù)時(shí)sleep幾秒

因?yàn)閿?shù)據(jù)量會(huì)比較大,上報(bào)的數(shù)據(jù)表按天命名存儲(chǔ)

接口:

上報(bào)數(shù)據(jù)接口

統(tǒng)計(jì)查詢接口

上線跟進(jìn):

服務(wù)業(yè)務(wù)基本正常

每天的上報(bào)表有上千萬(wàn)的數(shù)據(jù)

冗余,自動(dòng)化

當(dāng)高并發(fā)業(yè)務(wù)所在的服務(wù)器出現(xiàn)宕機(jī)的時(shí)候,需要有備用服務(wù)器進(jìn)行快速的替代,在應(yīng)用服務(wù)器壓力大的時(shí)候可以快速添加機(jī)器到集群中,所以我們就需要有備用機(jī)器可以隨時(shí)待命。 最理想的方式是可以通過(guò)自動(dòng)化監(jiān)控服務(wù)器資源消耗來(lái)進(jìn)行報(bào)警,自動(dòng)切換降級(jí)方案,自動(dòng)的進(jìn)行服務(wù)器替換和添加操作等,通過(guò)自動(dòng)化可以減少人工的操作的成本,而且可以快速操作,避免人為操作上面的失誤。

冗余

數(shù)據(jù)庫(kù)備份

備用服務(wù)器

自動(dòng)化

自動(dòng)化監(jiān)控

自動(dòng)化報(bào)警

自動(dòng)化降級(jí)

通過(guò)GitLab事件,我們應(yīng)該反思,做了備份數(shù)據(jù)并不代表就萬(wàn)無(wú)一失了,我們需要保證高可用性,首先備份是否正常進(jìn)行,備份數(shù)據(jù)是否可用,需要我們進(jìn)行定期的檢查,或者自動(dòng)化監(jiān)控, 還有包括如何避免人為上的操作失誤問(wèn)題。(不過(guò)事件中g(shù)itlab的開(kāi)放性姿態(tài),積極的處理方式還是值得學(xué)習(xí)的)

總結(jié)

高并發(fā)架構(gòu)是一個(gè)不斷衍變的過(guò)程,冰洞三尺非一日之寒,長(zhǎng)城筑成非一日之功

打好基礎(chǔ)架構(gòu)方便以后的拓展,這點(diǎn)很重要

這里重新整理了下高并發(fā)下的架構(gòu)思路,舉例了幾個(gè)實(shí)踐的例子,如果對(duì)表述內(nèi)容有啥意見(jiàn)或者建議歡迎留言。

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,238評(píng)論 6 531
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,430評(píng)論 3 415
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人,你說(shuō)我怎么就攤上這事?!?“怎么了?”我有些...
    開(kāi)封第一講書人閱讀 176,134評(píng)論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我,道長(zhǎng),這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書人閱讀 62,893評(píng)論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 71,653評(píng)論 6 408
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書人閱讀 55,136評(píng)論 1 323
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,212評(píng)論 3 441
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書人閱讀 42,372評(píng)論 0 288
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,888評(píng)論 1 334
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 40,738評(píng)論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 42,939評(píng)論 1 369
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,482評(píng)論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,179評(píng)論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書人閱讀 34,588評(píng)論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書人閱讀 35,829評(píng)論 1 283
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 51,610評(píng)論 3 391
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 47,916評(píng)論 2 372

推薦閱讀更多精彩內(nèi)容