2018-06-15理解矩陣(一)

前不久chensh出于不可告人的目的,要充當老師,教別人線性代數。于是我被揪住就線性代數中一些務虛性的問題與他討論了幾次。很明顯,chensh覺得,要讓自己在講線性代數的時候不被那位強勢的學生認為是神經病,還是比較難的事情。

可憐的chensh,誰讓你趟這個地雷陣?!色令智昏啊!

線性代數課程,無論你從行列式入手還是直接從矩陣入手,從一開始就充斥著莫名其妙。比如說,在全國一般工科院系教學中應用最廣泛的同濟線性代數教材(現在到了第四版),一上來就介紹逆序數這個“前無古人,后無來者”的古怪概念,然后用逆序數給出行列式的一個極不直觀的定義,接著是一些簡直犯傻的行列式性質和習題——把這行乘一個系數加到另一行上,再把那一列減過來,折騰得那叫一個熱鬧,可就是壓根看不出這個東西有嘛用。大多數像我一樣資質平庸的學生到這里就有點犯暈:連這是個什么東西都模模糊糊的,就開始鉆火圈表演了,這未免太“無厘頭”了吧!于是開始有人逃課,更多的人開始抄作業。這下就中招了,因為其后的發展可以用一句峰回路轉來形容,緊跟著這個無厘頭的行列式的,是一個同樣無厘頭但是偉大的無以復加的家伙的出場——矩陣來了!多年之后,我才明白,當老師犯傻似地用中括號把一堆傻了吧嘰的數括起來,并且不緊不慢地說:“這個東西叫做矩陣”的時候,我的數學生涯掀開了何等悲壯辛酸、慘絕人寰的一幕!自那以后,在幾乎所有跟“學問”二字稍微沾點邊的東西里,矩陣這個家伙從不缺席。對于我這個沒能一次搞定線性代數的笨蛋來說,矩陣老大的不請自來每每搞得我灰頭土臉,頭破血流。長期以來,我在閱讀中一見矩陣,就如同阿Q見到了假洋鬼子,揉揉額角就繞道走。

事實上,我并不是特例。一般工科學生初學線性代數,通常都會感到困難。這種情形在國內外皆然。瑞典數學家Lars Garding在其名著Encounter with Mathematics中說:“如果不熟悉線性代數的概念,要去學習自然科學,現在看來就和文盲差不多。”,然而“按照現行的國際標準,線性代數是通過公理化來表述的,它是第二代數學模型,...,這就帶來了教學上的困難。”事實上,當我們開始學習線性代數的時候,不知不覺就進入了“第二代數學模型”的范疇當中,這意味著數學的表述方式和抽象性有了一次全面的進化,對于從小一直在“第一代數學模型”,即以實用為導向的、具體的數學模型中學習的我們來說,在沒有并明確告知的情況下進行如此劇烈的paradigm shift,不感到困難才是奇怪的。

大部分工科學生,往往是在學習了一些后繼課程,如數值分析、數學規劃、矩陣論之后,才逐漸能夠理解和熟練運用線性代數。即便如此,不少人即使能夠很熟練地以線性代數為工具進行科研和應用工作,但對于很多這門課程的初學者提出的、看上去是很基礎的問題卻并不清楚。比如說:

* 矩陣究竟是什么東西?向量可以被認為是具有n個相互獨立的性質(維度)的對象的表示,矩陣又是什么呢?我們如果認為矩陣是一組列(行)向量組成的新的復合向量的展開式,那么為什么這種展開式具有如此廣泛的應用?特別是,為什么偏偏二維的展開式如此有用?如果矩陣中每一個元素又是一個向量,那么我們再展開一次,變成三維的立方陣,是不是更有用?

* 矩陣的乘法規則究竟為什么這樣規定?為什么這樣一種怪異的乘法規則卻能夠在實踐中發揮如此巨大的功效?很多看上去似乎是完全不相關的問題,最后竟然都歸結到矩陣的乘法,這難道不是很奇妙的事情?難道在矩陣乘法那看上去莫名其妙的規則下面,包含著世界的某些本質規律?如果是的話,這些本質規律是什么?

* 行列式究竟是一個什么東西?為什么會有如此怪異的計算規則?行列式與其對應方陣本質上是什么關系?為什么只有方陣才有對應的行列式,而一般矩陣就沒有(不要覺得這個問題很蠢,如果必要,針對m x n矩陣定義行列式不是做不到的,之所以不做,是因為沒有這個必要,但是為什么沒有這個必要)?而且,行列式的計算規則,看上去跟矩陣的任何計算規則都沒有直觀的聯系,為什么又在很多方面決定了矩陣的性質?難道這一切僅是巧合?

* 矩陣為什么可以分塊計算?分塊計算這件事情看上去是那么隨意,為什么竟是可行的?

* 對于矩陣轉置運算AT,有(AB)T?= BTAT,對于矩陣求逆運算A-1,有(AB)-1?= B-1A-1。兩個看上去完全沒有什么關系的運算,為什么有著類似的性質?這僅僅是巧合嗎?

* 為什么說P-1AP得到的矩陣與A矩陣“相似”?這里的“相似”是什么意思?

* 特征值和特征向量的本質是什么?它們定義就讓人很驚訝,因為Ax =λx,一個諾大的矩陣的效應,竟然不過相當于一個小小的數λ,確實有點奇妙。但何至于用“特征”甚至“本征”來界定?它們刻劃的究竟是什么?

這樣的一類問題,經常讓使用線性代數已經很多年的人都感到為難。就好像大人面對小孩子的刨根問底,最后總會迫不得已地說“就這樣吧,到此為止”一樣,面對這樣的問題,很多老手們最后也只能用:“就是這么規定的,你接受并且記住就好”來搪塞。然而,這樣的問題如果不能獲得回答,線性代數對于我們來說就是一個粗暴的、不講道理的、莫名其妙的規則集合,我們會感到,自己并不是在學習一門學問,而是被不由分說地“拋到”一個強制的世界中,只是在考試的皮鞭揮舞之下被迫趕路,全然無法領略其中的美妙、和諧與統一。直到多年以后,我們已經發覺這門學問如此的有用,卻仍然會非常迷惑:怎么這么湊巧?

我認為,這是我們的線性代數教學中直覺性喪失的后果。上述這些涉及到“如何能”、“怎么會”的問題,僅僅通過純粹的數學證明來回答,是不能令提問者滿意的。比如,如果你通過一般的證明方法論證了矩陣分塊運算確實可行,那么這并不能夠讓提問者的疑惑得到解決。他們真正的困惑是:矩陣分塊運算為什么竟然是可行的?究竟只是湊巧,還是說這是由矩陣這種對象的某種本質所必然決定的?如果是后者,那么矩陣的這些本質是什么?只要對上述那些問題稍加考慮,我們就會發現,所有這些問題都不是單純依靠數學證明所能夠解決的。像我們的教科書那樣,凡事用數學證明,最后培養出來的學生,只能熟練地使用工具,卻欠缺真正意義上的理解。

自從1930年代法國布爾巴基學派興起以來,數學的公理化、系統性描述已經獲得巨大的成功,這使得我們接受的數學教育在嚴謹性上大大提高。然而數學公理化的一個備受爭議的副作用,就是一般數學教育中直覺性的喪失。數學家們似乎認為直覺性與抽象性是矛盾的,因此毫不猶豫地犧牲掉前者。然而包括我本人在內的很多人都對此表示懷疑,我們不認為直覺性與抽象性一定相互矛盾,特別是在數學教育中和數學教材中,幫助學生建立直覺,有助于它們理解那些抽象的概念,進而理解數學的本質。反之,如果一味注重形式上的嚴格性,學生就好像被迫進行鉆火圈表演的小白鼠一樣,變成枯燥的規則的奴隸。

對于線性代數的類似上述所提到的一些直覺性的問題,兩年多來我斷斷續續地反復思考了四、五次,為此閱讀了好幾本國內外線性代數、數值分析、代數和數學通論性書籍,其中像前蘇聯的名著《數學:它的內容、方法和意義》、龔昇教授的《線性代數五講》、前面提到的Encounter with Mathematics(《數學概觀》)以及Thomas A. Garrity的《數學拾遺》都給我很大的啟發。不過即使如此,我對這個主題的認識也經歷了好幾次自我否定。比如以前思考的一些結論曾經寫在自己的blog里,但是現在看來,這些結論基本上都是錯誤的。因此打算把自己現在的有關理解比較完整地記錄下來,一方面是因為我覺得現在的理解比較成熟了,可以拿出來與別人探討,向別人請教。另一方面,如果以后再有進一步的認識,把現在的理解給推翻了,那現在寫的這個snapshot也是很有意義的。

因為打算寫得比較多,所以會分幾次慢慢寫。也不知道是不是有時間慢慢寫完整,會不會中斷,寫著看吧。

--------------------------------------------------------------------------

今天先談談對線形空間和矩陣的幾個核心概念的理解。這些東西大部分是憑著自己的理解寫出來的,基本上不抄書,可能有錯誤的地方,希望能夠被指出。但我希望做到直覺,也就是說能把數學背后說的實質問題說出來。

首先說說空間(space),這個概念是現代數學的命根子之一,從拓撲空間開始,一步步往上加定義,可以形成很多空間。線形空間其實還是比較初級的,如果在里面定義了范數,就成了賦范線性空間。賦范線性空間滿足完備性,就成了巴那赫空間;賦范線性空間中定義角度,就有了內積空間,內積空間再滿足完備性,就得到希爾伯特空間。

總之,空間有很多種。你要是去看某種空間的數學定義,大致都是“存在一個集合,在這個集合上定義某某概念,然后滿足某些性質”,就可以被稱為空間。這未免有點奇怪,為什么要用“空間”來稱呼一些這樣的集合呢?大家將會看到,其實這是很有道理的。

我們一般人最熟悉的空間,毫無疑問就是我們生活在其中的(按照牛頓的絕對時空觀)的三維空間,從數學上說,這是一個三維的歐幾里德空間,我們先不管那么多,先看看我們熟悉的這樣一個空間有些什么最基本的特點。仔細想想我們就會知道,這個三維的空間:1. 由很多(實際上是無窮多個)位置點組成;2. 這些點之間存在相對的關系;3. 可以在空間中定義長度、角度;4.?這個空間可以容納運動,這里我們所說的運動是從一個點到另一個點的移動(變換),而不是微積分意義上的“連續”性的運動,

上面的這些性質中,最最關鍵的是第4條。第1、2條只能說是空間的基礎,不算是空間特有的性質,凡是討論數學問題,都得有一個集合,大多數還得在這個集合上定義一些結構(關系),并不是說有了這些就算是空間。而第3條太特殊,其他的空間不需要具備,更不是關鍵的性質。只有第4條是空間的本質,也就是說,容納運動是空間的本質特征。

認識到了這些,我們就可以把我們關于三維空間的認識擴展到其他的空間。事實上,不管是什么空間,都必須容納和支持在其中發生的符合規則的運動(變換)。你會發現,在某種空間中往往會存在一種相對應的變換,比如拓撲空間中有拓撲變換,線性空間中有線性變換,仿射空間中有仿射變換,其實這些變換都只不過是對應空間中允許的運動形式而已。

因此只要知道,“空間”是容納運動的一個對象集合,而變換則規定了對應空間的運動。

下面我們來看看線性空間。線性空間的定義任何一本書上都有,但是既然我們承認線性空間是個空間,那么有兩個最基本的問題必須首先得到解決,那就是:

1. 空間是一個對象集合,線性空間也是空間,所以也是一個對象集合。那么線性空間是什么樣的對象的集合?或者說,線性空間中的對象有什么共同點嗎?

2. 線性空間中的運動如何表述的?也就是,線性變換是如何表示的?

我們先來回答第一個問題,回答這個問題的時候其實是不用拐彎抹角的,可以直截了當的給出答案。線性空間中的任何一個對象,通過選取基和坐標的辦法,都可以表達為向量的形式。通常的向量空間我就不說了,舉兩個不那么平凡的例子:

L1. 最高次項不大于n次的多項式的全體構成一個線性空間,也就是說,這個線性空間中的每一個對象是一個多項式。如果我們以x0, x1, ..., xn為基,那么任何一個這樣的多項式都可以表達為一組n+1維向量,其中的每一個分量ai其實就是多項式中x(i-1)項的系數。值得說明的是,基的選取有多種辦法,只要所選取的那一組基線性無關就可以。這要用到后面提到的概念了,所以這里先不說,提一下而已。

L2. 閉區間[a, b]上的n階連續可微函數的全體,構成一個線性空間。也就是說,這個線性空間的每一個對象是一個連續函數。對于其中任何一個連續函數,根據魏爾斯特拉斯定理,一定可以找到最高次項不大于n的多項式函數,使之與該連續函數的差為0,也就是說,完全相等。這樣就把問題歸結為L1了。后面就不用再重復了。

所以說,向量是很厲害的,只要你找到合適的基,用向量可以表示線性空間里任何一個對象。這里頭大有文章,因為向量表面上只是一列數,但是其實由于它的有序性,所以除了這些數本身攜帶的信息之外,還可以在每個數的對應位置上攜帶信息。為什么在程序設計中數組最簡單,卻又威力無窮呢?根本原因就在于此。這是另一個問題了,這里就不說了。

下面來回答第二個問題,這個問題的回答會涉及到線性代數的一個最根本的問題。

線性空間中的運動,被稱為線性變換。也就是說,你從線性空間中的一個點運動到任意的另外一個點,都可以通過一個線性變化來完成。那么,線性變換如何表示呢?很有意思,在線性空間中,當你選定一組基之后,不僅可以用一個向量來描述空間中的任何一個對象,而且可以用矩陣來描述該空間中的任何一個運動(變換)。而使某個對象發生對應運動的方法,就是用代表那個運動的矩陣,乘以代表那個對象的向量。

簡而言之,在線性空間中選定基之后,向量刻畫對象,矩陣刻畫對象的運動,用矩陣與向量的乘法施加運動。

是的,矩陣的本質是運動的描述。如果以后有人問你矩陣是什么,那么你就可以響亮地告訴他,矩陣的本質是運動的描述。(chensh,說你呢!)

可是多么有意思啊,向量本身不是也可以看成是n x 1矩陣嗎?這實在是很奇妙,一個空間中的對象和運動竟然可以用相類同的方式表示。能說這是巧合嗎?如果是巧合的話,那可真是幸運的巧合!可以說,線性代數中大多數奇妙的性質,均與這個巧合有直接的關系。

?著作權歸作者所有,轉載或內容合作請聯系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,702評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,143評論 3 415
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,553評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,620評論 1 307
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,416評論 6 405
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,940評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,024評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,170評論 0 287
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,709評論 1 333
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,597評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,784評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,291評論 5 357
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,029評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,407評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,663評論 1 280
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,403評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,746評論 2 370

推薦閱讀更多精彩內容

  • 理解矩陣一:轉載自:http://blog.csdn.net/myan/article/details/64751...
    jiandanjinxin閱讀 1,542評論 1 15
  • 這是很早以前已經看過的,最近無意中又把保存的文章翻出來時,想起很多朋友問過矩陣,雖對矩陣似懂非懂,但卻很想弄懂它,...
    dechuan閱讀 6,103評論 4 57
  • 如果不熟悉線性代數的概念,要去學習自然科學,現在看來就和文盲差不多。”,然而“按照現行的國際標準,線性代數是通過公...
    Drafei閱讀 1,572評論 0 3
  • 最近我手上用mpvue基于第三方平臺開發的第一個模板小程序上線了,這里我在接著嘮下我在開發過程中比較蛋疼的事情,有...
    9d0edee7bcb0閱讀 2,635評論 0 4
  • 文 / 靜待花開 2016年兒子開啟了自己人生的第一個社交年,進入幼兒園。雖然沒有傳說中的哭鬧、反抗,但是各種猝不...
    職心眼兒閱讀 146評論 0 1