為了能夠保證block正常訪問外部的變量,block有個變量捕獲機制,如下圖
捕獲的變量
auto:自動變量,平時我們定義int age = 10
,前面有個auto,auto int age = 10
,系統(tǒng)幫我們默認的加上了一個auto。-----值傳遞
-----
static:靜態(tài)變量 -----指針傳遞
-----
全局變量 -----直接訪問
-----
根據(jù)上面結論,我們一個個展開討論和分析。
一、自動變量auto修飾的變量,auto int age = 10;
int main(int argc, const char * argv[]) {
@autoreleasepool {
// insert code here...
auto int age = 10;
void (^block)(void) = ^() {
NSLog(@"age = %d,",age);
};
age = 20;
block();
}
return 0;
}
此main函數(shù)中的block,是我們常見的OC代碼,那我們從聲明 int age = 10;
到將age的值改變age = 20
,最后block輸出的age會等于20嗎
帶著這個疑問,我們來分析一下底層代碼的實現(xiàn),OC-->C++的轉(zhuǎn)換過程:cd到程序main.m的目錄下,執(zhí)行命令xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc main.m
,可以得到一個main.cpp文件,拖到工程目錄中。
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
int age;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _age, int flags=0) : age(_age) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
int age = __cself->age; // bound by copy
NSLog((NSString *)&__NSConstantStringImpl__var_folders_5l_0xn052bn6dgb9z7pfk8bbg740000gn_T_main_6a0dd1_mi_0,age);
}
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
int age = 10;
void (*block)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, age));
age = 20;
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
}
return 0;
}
這堆代碼,大家都很熟悉了吧,從上一章節(jié)講block-底層數(shù)據(jù)結構就分析過的,看看定義了int age = 10
的區(qū)別
auto變量的源碼.png
從上圖中的源碼中,我們可以留意到外部聲明的
int age = 10
在block里使用做的事情為了能夠保證block正常訪問外部的變量,block有個變量捕獲機制,那什么類型會捕獲到block內(nèi)部,什么類型不會捕獲呢,我們來探討一下
- 1.在main函數(shù)中,在block定義時,block將外部的age當做參數(shù)傳給了
__main_block_impl_0
- 2.
__main_block_impl_0
已經(jīng)將外面聲明age捕捉賦值到block內(nèi)部,既block內(nèi)部也定義了一個int age;
類型 - 3.block把main函數(shù)定義的
int age = 10
的值當做參數(shù)賦值給了block里面的age - 4.此時改變age的值,只是改變main函數(shù)里的age的值,無法改變block內(nèi)部的age的值,兩個是屬于不同函數(shù)體內(nèi)的age,互不相關。
- 5.
block()
調(diào)用時,輸出的age = __cselef->age
,就是等于block內(nèi)部(__main_block_impl_0
)的age值
auto變量總結,由上面的分析,我們可驗證自動變量auto修飾的變量,是有捕捉到block內(nèi)部,并且是屬于值傳遞。
二、靜態(tài)變量static修飾的變量,static int age = 10;
int main(int argc, const char * argv[]) {
@autoreleasepool {
// insert code here...
static int age = 10;
void (^block)(void) = ^() {
NSLog(@"age = %d,",age);
};
age = 20;
block();
}
return 0;
}
// 控制臺的輸出
2018-06-13 15:30:13.674073+0800 block-變量的捕獲[92711:10064124] age = 20,
Program ended with exit code: 0
static修飾的變量age,打印的時候age = 20,為什么用static就能修改了呢?我們來看一下下面的轉(zhuǎn)換成C++后的代碼,分析一下底層的實現(xiàn)。
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
int *age;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int *_age, int flags=0) : age(_age) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
int *age = __cself->age; // bound by copy
NSLog((NSString *)&__NSConstantStringImpl__var_folders_5l_0xn052bn6dgb9z7pfk8bbg740000gn_T_main_73b8c0_mi_0,(*age));
}
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
static int age = 10;
void (*block)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, &age));
age = 20;
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
}
return 0;
}
static變量的源碼.png
static變量總結,由上圖的分析,我們可以得知,static 修飾的age,是會捕獲進block內(nèi)部,并且捕獲的是age的地址,所以外面age變成20的時候,block內(nèi)部輸出的age也是等于20,因為外部和block內(nèi)部的age指向的是同一地址。
三、全局變量
int age = 10;
int main(int argc, const char * argv[]) {
@autoreleasepool {
// insert code here...
void (^block)(void) = ^() {
NSLog(@"age = %d,",age);
};
age = 20;
block();
}
return 0;
}
// 控制臺的打印
2018-06-13 16:08:54.737079+0800 block-變量的捕獲[96358:10119188] age = 20,
Program ended with exit code: 0
當age時全局變量的時候,打印的結果為20,按常理來分析,全部變量的作用域是默認的情況下是所有的函數(shù)
,生命周期是程序結束時
,所以block里打印等于20,應該大家都能理解,那我們來看一下block內(nèi)部有沒有捕獲到age呢,分析一下源碼,如下
int age = 10;
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
NSLog((NSString *)&__NSConstantStringImpl__var_folders_5l_0xn052bn6dgb9z7pfk8bbg740000gn_T_main_164d03_mi_0,age);
}
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
void (*block)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));
age = 20;
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
}
return 0;
}