scikit-learn系列之如何調(diào)整算法參數(shù)

調(diào)整算法參數(shù)

機(jī)器學(xué)習(xí)的模型都是參數(shù)化的,以便于其針對(duì)特定的問題進(jìn)行調(diào)整。一個(gè)模型有很多參數(shù),尋找這些參數(shù)的最佳組合其實(shí)是一個(gè)搜索問題。本文中,你會(huì)學(xué)習(xí)到如何使用scikit-learn庫來調(diào)整機(jī)器學(xué)習(xí)算法的參數(shù)。使用scikit-learn API版本為0.18。

調(diào)整參數(shù)是呈現(xiàn)機(jī)器學(xué)習(xí)結(jié)果前的最后一步。有時(shí)這一過程也叫超參最優(yōu)化,其中算法的參數(shù)叫做超參,而具體機(jī)器學(xué)習(xí)模型的系數(shù)叫做參數(shù)。最優(yōu)化的意思暗示這是一個(gè)搜索問題。既然作為一個(gè)搜索問題,你就可以使用不同的搜索策略,為一個(gè)已知問題,找到一個(gè)好而且穩(wěn)定的參數(shù)或者參數(shù)集合。

兩個(gè)簡(jiǎn)單易行的搜索策略是網(wǎng)格搜索隨機(jī)搜索。scikit-learn提供了這兩種方法做參數(shù)調(diào)整。

1. 網(wǎng)格搜索調(diào)整參數(shù)

網(wǎng)格搜索是一種參數(shù)調(diào)整方法,對(duì)網(wǎng)格中的所有算法參數(shù)的組合建立和評(píng)價(jià)模型。以下代碼使用內(nèi)建的diabetes數(shù)據(jù)集,對(duì)Ridge回歸算法的alpha參數(shù)的不同值進(jìn)行模型評(píng)價(jià)。這是一個(gè)一維的網(wǎng)格搜索問題。

# Grid Search for Algorithm Tuning
import numpy as np
from sklearn import datasets
from sklearn.linear_model import Ridge
from sklearn.model_selection import GridSearchCV
# load the diabetes datasets
dataset = datasets.load_diabetes()
# prepare a range of alpha values to test
alphas = np.array([1,0.1,0.01,0.001,0.0001,0])
# create and fit a ridge regression model, testing each alpha
model = Ridge()
grid = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas))
grid.fit(dataset.data, dataset.target)
print(grid)
# summarize the results of the grid search
print(grid.best_score_)
print(grid.best_estimator_.alpha)

輸出結(jié)果:

GridSearchCV(cv=None, error_score='raise',
       estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
   normalize=False, random_state=None, solver='auto', tol=0.001),
       fit_params={}, iid=True, n_jobs=1,
       param_grid={'alpha': array([  1.00000e+00,   1.00000e-01,   1.00000e-02,   1.00000e-03,
         1.00000e-04,   0.00000e+00])},
       pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
       scoring=None, verbose=0)
0.488790204461
0.001

更多信息,請(qǐng)參見API中的GridSearchCV和用戶手冊(cè)中的Exhaustive Grid Search

2. 隨機(jī)搜索調(diào)整參數(shù)

隨機(jī)搜索也是一種調(diào)參方法,在一定迭代次數(shù)下,從一個(gè)隨機(jī)分布中抽樣選取算法參數(shù)。根據(jù)每一個(gè)參數(shù)組合進(jìn)行模型構(gòu)建和評(píng)估。以下代碼評(píng)估0到1間的不同的alpha值,同樣使用的是標(biāo)準(zhǔn)diabetes 數(shù)據(jù)集。

# Randomized Search for Algorithm Tuning
import numpy as np
from scipy.stats import uniform as sp_rand
from sklearn import datasets
from sklearn.linear_model import Ridge
from sklearn.model_selection import RandomizedSearchCV
# load the diabetes datasets
dataset = datasets.load_diabetes()
# prepare a uniform distribution to sample for the alpha parameter
param_grid = {'alpha': sp_rand()}
# create and fit a ridge regression model, testing random alpha values
model = Ridge()
rsearch = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=100)
rsearch.fit(dataset.data, dataset.target)
print(rsearch)
# summarize the results of the random parameter search
print(rsearch.best_score_)
print(rsearch.best_estimator_.alpha)

輸出結(jié)果:

RandomizedSearchCV(cv=None, error_score='raise',
          estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
   normalize=False, random_state=None, solver='auto', tol=0.001),
          fit_params={}, iid=True, n_iter=100, n_jobs=1,
          param_distributions={'alpha': <scipy.stats._distn_infrastructure.rv_frozen object at 0x105b8da90>},
          pre_dispatch='2*n_jobs', random_state=None, refit=True,
          return_train_score=True, scoring=None, verbose=0)
0.489160157304
0.0534269728673

更多信息請(qǐng)參見API中RandomizedSearchCV 的和用戶手冊(cè)中的Randomized Parameter Optimization

知識(shí)點(diǎn):

  1. sklearn.model_selection.GridSearchCV
  2. grid.fit, best_score_, best_estimator_.alpha
  3. sklearn.model_selection.RandomizedSearchCV
  4. rsearch.fit, best_score_, best_estimator_.alpha

原文鏈接:How to Tune Algorithm Parameters with Scikit-Learn

喜歡本文的話,就點(diǎn)個(gè)喜歡吧!歡迎轉(zhuǎn)載!

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,818評(píng)論 6 531
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,185評(píng)論 3 414
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,656評(píng)論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)。 經(jīng)常有香客問我,道長(zhǎng),這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,647評(píng)論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 71,446評(píng)論 6 405
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 54,951評(píng)論 1 321
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,041評(píng)論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,189評(píng)論 0 287
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,718評(píng)論 1 333
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 40,602評(píng)論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 42,800評(píng)論 1 369
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,316評(píng)論 5 358
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,045評(píng)論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,419評(píng)論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,671評(píng)論 1 281
  • 我被黑心中介騙來泰國(guó)打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 51,420評(píng)論 3 390
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 47,755評(píng)論 2 371

推薦閱讀更多精彩內(nèi)容