消息隊(duì)列應(yīng)用場(chǎng)景

原文http://blog.csdn.net/konglongaa/article/details/52208273

一、消息隊(duì)列概述

消息隊(duì)列中間件是分布式系統(tǒng)中重要的組件,主要解決應(yīng)用解耦,異步消息,流量削鋒等問題,實(shí)現(xiàn)高性能,高可用,可伸縮和最終一致性架構(gòu)。目前使用較多的消息隊(duì)列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ

二、消息隊(duì)列應(yīng)用場(chǎng)景

以下介紹消息隊(duì)列在實(shí)際應(yīng)用中常用的使用場(chǎng)景。異步處理,應(yīng)用解耦,流量削鋒和消息通訊四個(gè)場(chǎng)景。

2.1異步處理

場(chǎng)景說明:用戶注冊(cè)后,需要發(fā)注冊(cè)郵件和注冊(cè)短信。傳統(tǒng)的做法有兩種 1.串行的方式;2.并行方式

a、串行方式:將注冊(cè)信息寫入數(shù)據(jù)庫成功后,發(fā)送注冊(cè)郵件,再發(fā)送注冊(cè)短信。以上三個(gè)任務(wù)全部完成后,返回給客戶端。

b、并行方式:將注冊(cè)信息寫入數(shù)據(jù)庫成功后,發(fā)送注冊(cè)郵件的同時(shí),發(fā)送注冊(cè)短信。以上三個(gè)任務(wù)完成后,返回給客戶端。與串行的差別是,并行的方式可以提高處理的時(shí)間

假設(shè)三個(gè)業(yè)務(wù)節(jié)點(diǎn)每個(gè)使用50毫秒鐘,不考慮網(wǎng)絡(luò)等其他開銷,則串行方式的時(shí)間是150毫秒,并行的時(shí)間可能是100毫秒。

因?yàn)镃PU在單位時(shí)間內(nèi)處理的請(qǐng)求數(shù)是一定的,假設(shè)CPU1秒內(nèi)吞吐量是100次。則串行方式1秒內(nèi)CPU可處理的請(qǐng)求量是7次(1000/150)。并行方式處理的請(qǐng)求量是10次(1000/100)

小結(jié):如以上案例描述,傳統(tǒng)的方式系統(tǒng)的性能(并發(fā)量,吞吐量,響應(yīng)時(shí)間)會(huì)有瓶頸。如何解決這個(gè)問題呢?

引入消息隊(duì)列,將不是必須的業(yè)務(wù)邏輯,異步處理。改造后的架構(gòu)如下:

按照以上約定,用戶的響應(yīng)時(shí)間相當(dāng)于是注冊(cè)信息寫入數(shù)據(jù)庫的時(shí)間,也就是50毫秒。注冊(cè)郵件,發(fā)送短信寫入消息隊(duì)列后,直接返回,因此寫入消息隊(duì)列的速度很快,基本可以忽略,因此用戶的響應(yīng)時(shí)間可能是50毫秒。因此架構(gòu)改變后,系統(tǒng)的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了兩倍。

2.2應(yīng)用解耦

場(chǎng)景說明:用戶下單后,訂單系統(tǒng)需要通知庫存系統(tǒng)。傳統(tǒng)的做法是,訂單系統(tǒng)調(diào)用庫存系統(tǒng)的接口。如下圖:

傳統(tǒng)模式的缺點(diǎn):假如庫存系統(tǒng)無法訪問,則訂單減庫存將失敗,從而導(dǎo)致訂單失敗,訂單系統(tǒng)與庫存系統(tǒng)耦合

如何解決以上問題呢?引入應(yīng)用消息隊(duì)列后的方案,如下圖:

訂單系統(tǒng):用戶下單后,訂單系統(tǒng)完成持久化處理,將消息寫入消息隊(duì)列,返回用戶訂單下單成功

庫存系統(tǒng):訂閱下單的消息,采用拉/推的方式,獲取下單信息,庫存系統(tǒng)根據(jù)下單信息,進(jìn)行庫存操作

假如:在下單時(shí)庫存系統(tǒng)不能正常使用。也不影響正常下單,因?yàn)橄聠魏螅唵蜗到y(tǒng)寫入消息隊(duì)列就不再關(guān)心其他的后續(xù)操作了。實(shí)現(xiàn)訂單系統(tǒng)與庫存系統(tǒng)的應(yīng)用解耦

2.3流量削鋒

流量削鋒也是消息隊(duì)列中的常用場(chǎng)景,一般在秒殺或團(tuán)搶活動(dòng)中使用廣泛。

應(yīng)用場(chǎng)景:秒殺活動(dòng),一般會(huì)因?yàn)榱髁窟^大,導(dǎo)致流量暴增,應(yīng)用掛掉。為解決這個(gè)問題,一般需要在應(yīng)用前端加入消息隊(duì)列。

a、可以控制活動(dòng)的人數(shù)

b、可以緩解短時(shí)間內(nèi)高流量壓垮應(yīng)用

用戶的請(qǐng)求,服務(wù)器接收后,首先寫入消息隊(duì)列。假如消息隊(duì)列長(zhǎng)度超過最大數(shù)量,則直接拋棄用戶請(qǐng)求或跳轉(zhuǎn)到錯(cuò)誤頁面。

秒殺業(yè)務(wù)根據(jù)消息隊(duì)列中的請(qǐng)求信息,再做后續(xù)處理

2.4日志處理

日志處理是指將消息隊(duì)列用在日志處理中,比如Kafka的應(yīng)用,解決大量日志傳輸?shù)膯栴}。架構(gòu)簡(jiǎn)化如下

日志采集客戶端,負(fù)責(zé)日志數(shù)據(jù)采集,定時(shí)寫受寫入Kafka隊(duì)列

Kafka消息隊(duì)列,負(fù)責(zé)日志數(shù)據(jù)的接收,存儲(chǔ)和轉(zhuǎn)發(fā)

日志處理應(yīng)用:訂閱并消費(fèi)kafka隊(duì)列中的日志數(shù)據(jù)

2.5消息通訊

消息通訊是指,消息隊(duì)列一般都內(nèi)置了高效的通信機(jī)制,因此也可以用在純的消息通訊。比如實(shí)現(xiàn)點(diǎn)對(duì)點(diǎn)消息隊(duì)列,或者聊天室等

點(diǎn)對(duì)點(diǎn)通訊:

客戶端A和客戶端B使用同一隊(duì)列,進(jìn)行消息通訊。

聊天室通訊:

客戶端A,客戶端B,客戶端N訂閱同一主題,進(jìn)行消息發(fā)布和接收。實(shí)現(xiàn)類似聊天室效果。

以上實(shí)際是消息隊(duì)列的兩種消息模式,點(diǎn)對(duì)點(diǎn)或發(fā)布訂閱模式。模型為示意圖,供參考。

三、消息中間件示例

3.1電商系統(tǒng)

消息隊(duì)列采用高可用,可持久化的消息中間件。比如Active MQ,Rabbit MQ,Rocket Mq。

(1)應(yīng)用將主干邏輯處理完成后,寫入消息隊(duì)列。消息發(fā)送是否成功可以開啟消息的確認(rèn)模式。(消息隊(duì)列返回消息接收成功狀態(tài)后,應(yīng)用再返回,這樣保障消息的完整性)

(2)擴(kuò)展流程(發(fā)短信,配送處理)訂閱隊(duì)列消息。采用推或拉的方式獲取消息并處理。

(3)消息將應(yīng)用解耦的同時(shí),帶來了數(shù)據(jù)一致性問題,可以采用最終一致性方式解決。比如主數(shù)據(jù)寫入數(shù)據(jù)庫,擴(kuò)展應(yīng)用根據(jù)消息隊(duì)列,并結(jié)合數(shù)據(jù)庫方式實(shí)現(xiàn)基于消息隊(duì)列的后續(xù)處理。

3.2日志收集系統(tǒng)

分為Zookeeper注冊(cè)中心,日志收集客戶端,Kafka集群和Storm集群(OtherApp)四部分組成。

Zookeeper注冊(cè)中心,提出負(fù)載均衡和地址查找服務(wù)

日志收集客戶端,用于采集應(yīng)用系統(tǒng)的日志,并將數(shù)據(jù)推送到kafka隊(duì)列

Kafka集群:接收,路由,存儲(chǔ),轉(zhuǎn)發(fā)等消息處理

Storm集群:與OtherApp處于同一級(jí)別,采用拉的方式消費(fèi)隊(duì)列中的數(shù)據(jù)

四、JMS消息服務(wù)

講消息隊(duì)列就不得不提JMS 。JMS(JAVA Message Service,java消息服務(wù))API是一個(gè)消息服務(wù)的標(biāo)準(zhǔn)/規(guī)范,允許應(yīng)用程序組件基于JavaEE平臺(tái)創(chuàng)建、發(fā)送、接收和讀取消息。它使分布式通信耦合度更低,消息服務(wù)更加可靠以及異步性。

在EJB架構(gòu)中,有消息bean可以無縫的與JM消息服務(wù)集成。在J2EE架構(gòu)模式中,有消息服務(wù)者模式,用于實(shí)現(xiàn)消息與應(yīng)用直接的解耦。

4.1消息模型

在JMS標(biāo)準(zhǔn)中,有兩種消息模型P2P(Point to Point),Publish/Subscribe(Pub/Sub)。

4.1.1 P2P模式

P2P模式包含三個(gè)角色:消息隊(duì)列(Queue),發(fā)送者(Sender),接收者(Receiver)。每個(gè)消息都被發(fā)送到一個(gè)特定的隊(duì)列,接收者從隊(duì)列中獲取消息。隊(duì)列保留著消息,直到他們被消費(fèi)或超時(shí)。

P2P的特點(diǎn)

每個(gè)消息只有一個(gè)消費(fèi)者(Consumer)(即一旦被消費(fèi),消息就不再在消息隊(duì)列中)

發(fā)送者和接收者之間在時(shí)間上沒有依賴性,也就是說當(dāng)發(fā)送者發(fā)送了消息之后,不管接收者有沒有正在運(yùn)行,它不會(huì)影響到消息被發(fā)送到隊(duì)列

接收者在成功接收消息之后需向隊(duì)列應(yīng)答成功

如果希望發(fā)送的每個(gè)消息都會(huì)被成功處理的話,那么需要P2P模式。

4.1.2 Pub/Sub模式

包含三個(gè)角色主題(Topic),發(fā)布者(Publisher),訂閱者(Subscriber) 多個(gè)發(fā)布者將消息發(fā)送到Topic,系統(tǒng)將這些消息傳遞給多個(gè)訂閱者。

Pub/Sub的特點(diǎn)

每個(gè)消息可以有多個(gè)消費(fèi)者

發(fā)布者和訂閱者之間有時(shí)間上的依賴性。針對(duì)某個(gè)主題(Topic)的訂閱者,它必須創(chuàng)建一個(gè)訂閱者之后,才能消費(fèi)發(fā)布者的消息

為了消費(fèi)消息,訂閱者必須保持運(yùn)行的狀態(tài)

為了緩和這樣嚴(yán)格的時(shí)間相關(guān)性,JMS允許訂閱者創(chuàng)建一個(gè)可持久化的訂閱。這樣,即使訂閱者沒有被激活(運(yùn)行),它也能接收到發(fā)布者的消息。

如果希望發(fā)送的消息可以不被做任何處理、或者只被一個(gè)消息者處理、或者可以被多個(gè)消費(fèi)者處理的話,那么可以采用Pub/Sub模型。

4.2消息消費(fèi)

在JMS中,消息的產(chǎn)生和消費(fèi)都是異步的。對(duì)于消費(fèi)來說,JMS的消息者可以通過兩種方式來消費(fèi)消息。

(1)同步

訂閱者或接收者通過receive方法來接收消息,receive方法在接收到消息之前(或超時(shí)之前)將一直阻塞;

(2)異步

訂閱者或接收者可以注冊(cè)為一個(gè)消息監(jiān)聽器。當(dāng)消息到達(dá)之后,系統(tǒng)自動(dòng)調(diào)用監(jiān)聽器的onMessage方法。

JNDI:Java命名和目錄接口,是一種標(biāo)準(zhǔn)的Java命名系統(tǒng)接口。可以在網(wǎng)絡(luò)上查找和訪問服務(wù)。通過指定一個(gè)資源名稱,該名稱對(duì)應(yīng)于數(shù)據(jù)庫或命名服務(wù)中的一個(gè)記錄,同時(shí)返回資源連接建立所必須的信息。

JNDI在JMS中起到查找和訪問發(fā)送目標(biāo)或消息來源的作用。

五、常用消息隊(duì)列

一般商用的容器,比如WebLogic,JBoss,都支持JMS標(biāo)準(zhǔn),開發(fā)上很方便。但免費(fèi)的比如Tomcat,Jetty等則需要使用第三方的消息中間件。本部分內(nèi)容介紹常用的消息中間件(Active MQ,Rabbit MQ,Zero MQ,Kafka)以及他們的特點(diǎn)。

5.1 ActiveMQ

ActiveMQ 是Apache出品,最流行的,能力強(qiáng)勁的開源消息總線。ActiveMQ 是一個(gè)完全支持JMS1.1和J2EE 1.4規(guī)范的 JMS Provider實(shí)現(xiàn),盡管JMS規(guī)范出臺(tái)已經(jīng)是很久的事情了,但是JMS在當(dāng)今的J2EE應(yīng)用中間仍然扮演著特殊的地位。

ActiveMQ特性如下:

⒈ 多種語言和協(xié)議編寫客戶端。語言: Java,C,C++,C#,Ruby,Perl,Python,PHP。應(yīng)用協(xié)議: OpenWire,Stomp REST,WS Notification,XMPP,AMQP

⒉ 完全支持JMS1.1和J2EE 1.4規(guī)范 (持久化,XA消息,事務(wù))

⒊ 對(duì)Spring的支持,ActiveMQ可以很容易內(nèi)嵌到使用Spring的系統(tǒng)里面去,而且也支持Spring2.0的特性

⒋ 通過了常見J2EE服務(wù)器(如 Geronimo,JBoss 4,GlassFish,WebLogic)的測(cè)試,其中通過JCA 1.5 resource adaptors的配置,可以讓ActiveMQ可以自動(dòng)的部署到任何兼容J2EE 1.4 商業(yè)服務(wù)器上

⒌ 支持多種傳送協(xié)議:in-VM,TCP,SSL,NIO,UDP,JGroups,JXTA

⒍ 支持通過JDBC和journal提供高速的消息持久化

⒎ 從設(shè)計(jì)上保證了高性能的集群,客戶端-服務(wù)器,點(diǎn)對(duì)點(diǎn)

⒏ 支持Ajax

⒐ 支持與Axis的整合

⒑ 可以很容易得調(diào)用內(nèi)嵌JMS provider,進(jìn)行測(cè)試

5.2 Kafka

Kafka是一種高吞吐量的分布式發(fā)布訂閱消息系統(tǒng),它可以處理消費(fèi)者規(guī)模的網(wǎng)站中的所有動(dòng)作流數(shù)據(jù)。 這種動(dòng)作(網(wǎng)頁瀏覽,搜索和其他用戶的行動(dòng))是在現(xiàn)代網(wǎng)絡(luò)上的許多社會(huì)功能的一個(gè)關(guān)鍵因素。 這些數(shù)據(jù)通常是由于吞吐量的要求而通過處理日志和日志聚合來解決。 對(duì)于像Hadoop的一樣的日志數(shù)據(jù)和離線分析系統(tǒng),但又要求實(shí)時(shí)處理的限制,這是一個(gè)可行的解決方案。Kafka的目的是通過Hadoop的并行加載機(jī)制來統(tǒng)一線上和離線的消息處理,也是為了通過集群機(jī)來提供實(shí)時(shí)的消費(fèi)。

Kafka是一種高吞吐量的分布式發(fā)布訂閱消息系統(tǒng),有如下特性:

通過O(1)的磁盤數(shù)據(jù)結(jié)構(gòu)提供消息的持久化,這種結(jié)構(gòu)對(duì)于即使數(shù)以TB的消息存儲(chǔ)也能夠保持長(zhǎng)時(shí)間的穩(wěn)定性能。(文件追加的方式寫入數(shù)據(jù),過期的數(shù)據(jù)定期刪除)

高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒數(shù)百萬的消息

支持通過Kafka服務(wù)器和消費(fèi)機(jī)集群來分區(qū)消息

支持Hadoop并行數(shù)據(jù)加載

Kafka相關(guān)概念

Broker

Kafka集群包含一個(gè)或多個(gè)服務(wù)器,這種服務(wù)器被稱為broker[5]

Topic

每條發(fā)布到Kafka集群的消息都有一個(gè)類別,這個(gè)類別被稱為Topic。(物理上不同Topic的消息分開存儲(chǔ),邏輯上一個(gè)Topic的消息雖然保存于一個(gè)或多個(gè)broker上但用戶只需指定消息的Topic即可生產(chǎn)或消費(fèi)數(shù)據(jù)而不必關(guān)心數(shù)據(jù)存于何處)

Partition

Parition是物理上的概念,每個(gè)Topic包含一個(gè)或多個(gè)Partition.

Producer

負(fù)責(zé)發(fā)布消息到Kafka broker

Consumer

消息消費(fèi)者,向Kafka broker讀取消息的客戶端。

Consumer Group

每個(gè)Consumer屬于一個(gè)特定的Consumer Group(可為每個(gè)Consumer指定group name,若不指定group name則屬于默認(rèn)的group)。

一般應(yīng)用在大數(shù)據(jù)日志處理或?qū)?shí)時(shí)性(少量延遲),可靠性(少量丟數(shù)據(jù))要求稍低的場(chǎng)景使用。

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,818評(píng)論 6 531
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,185評(píng)論 3 414
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,656評(píng)論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)。 經(jīng)常有香客問我,道長(zhǎng),這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,647評(píng)論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 71,446評(píng)論 6 405
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 54,951評(píng)論 1 321
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,041評(píng)論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,189評(píng)論 0 287
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,718評(píng)論 1 333
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 40,602評(píng)論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 42,800評(píng)論 1 369
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,316評(píng)論 5 358
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,045評(píng)論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,419評(píng)論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,671評(píng)論 1 281
  • 我被黑心中介騙來泰國(guó)打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 51,420評(píng)論 3 390
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 47,755評(píng)論 2 371

推薦閱讀更多精彩內(nèi)容

  • Spring Cloud為開發(fā)人員提供了快速構(gòu)建分布式系統(tǒng)中一些常見模式的工具(例如配置管理,服務(wù)發(fā)現(xiàn),斷路器,智...
    卡卡羅2017閱讀 134,781評(píng)論 18 139
  • 一、 消息隊(duì)列概述 消息隊(duì)列中間件是分布式系統(tǒng)中重要的組件,主要解決應(yīng)用耦合、異步消息、流量削鋒等問題。實(shí)現(xiàn)高性能...
    步積閱讀 57,032評(píng)論 10 138
  • 姓名:周小蓬 16019110037 轉(zhuǎn)載自:http://blog.csdn.net/YChenFeng/art...
    aeytifiw閱讀 34,737評(píng)論 13 425
  • 1 消息隊(duì)列概述 消息隊(duì)列中間件是分布式系統(tǒng)中重要的組件,主要解決應(yīng)用耦合,異步消息,流量削鋒等問題。實(shí)現(xiàn)高性能,...
    Bobby0322閱讀 10,893評(píng)論 0 24
  • 櫻,映落黑眸,花碎,空中彷徨,宛若與你邂逅的眉眼,拂墜一珠又一珠粉紅色的淚,鋪了一地的憂傷。 惆悵近在咫尺,...
    芷木紫閱讀 200評(píng)論 0 0