Generative Modeling for Small-Data Object Detection (ICCV2019)

1. main info

  • iccv2019
  • task: Small-Data Object Detection
  • main idea: using generative model

motivation: 1) generative models e.g., GAN is very successful; 2) how can they be useful for downstream tasks?

One example is object detection (OD), especially small-data OD where labeled data is limited. For example, in the case of medical images.

This paper: uses generative models to improve the performance in small-data object detection.

Some problems may appear:

  1. previous works on object insertion for generative models often needs segmentation masks, which are often not available;
  2. GANs are designed to generate realistic images but may not align with the downstream tasks.

Thus, a new DetectorGAN is proposed. DetectorGAN combines the detector and the GAN together in a unified model.

In general, there are two branches after the detector, 1) discriminator to generate adversarial loss; 2) detector to generate the detection loss. Two losses are used to train the model.

Typically, one difficulty is the generator will not receive the gradients of the dection loss, which makes the goal of generating better images for OD fail. Thus, this paper bridges the line between the generator and detection loss.

main contribution:

  1. first integrate a detector into the GAN;
  2. propose a novel unrolling method to bridge the generator and detection.
  3. good results

2. Related works

  1. image-to-image translation
  2. object insertion with GANs
  3. Integration of GANs and Classifiers
  4. Data AUfmenttaion for Object Detection

3. DetectorGAN

main components: a generator, (multiple) discriminators, and a detector.

  • detector: gives feedback to generator on whether generated images are good.

  • discriminator: improve the realism and interpretability of the generated images.

  • X: learn images without objects;

  • Y: labeled images with objects;

3.1 modules

1) Generators

  • G_X: takes X and mask as input, output synthetic image with input background and an object inserted at the masked area.
  • G_Y: takes Y and the object mask as input, output an image with the indicated object removed.

the masks which indicate the plausible inserting locations are also important to the results. It depends on the target datasets.

2) Discriminators

DIS_{globalX}: between {real X, generated X} globally.
DIS_{globalY}: between {real Y, generated Y} globally.
DIS_{localX}: between {real X, generated X} locally in the mased area.

3) detector

  • detect for both Y and generated X.

3.2 Train generator with detection losses

key: train generator G_X using the gradients from the detector.

  • L_{det}^{real} only related to real image Y and the detector
  • L_{det}^{syn} related to clean image X, detector, and G_X.

limitation: there is no link between the real image Y and the generator G_X while the goal is to achieve good results on the real image Y.

Thus, propose the unrolling a single forward-backward pass of the detector:

I think that means using the gradients from the L_{det}^{real} and L_{det}^{syn} to update the weights of the detector at the same time.

Specifically,

  1. train weight DET with generated X and real Y and obtain the gradients using eq.3
  2. update DET
  3. use the updated DET to get eq.1

3.3 overall losses and training

  1. detection: detection loss, eq.1 effected by eq.3, and eq.2
  2. close to the real images globally and locally; L_{GAN}(DIS_{globalX}), L_{GAN}(DIS_{globalY}), L_{GAN}(DIS_{localX});
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,238評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,430評論 3 415
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,134評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,893評論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,653評論 6 408
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,136評論 1 323
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,212評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,372評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,888評論 1 334
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,738評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,939評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,482評論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,179評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,588評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,829評論 1 283
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,610評論 3 391
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,916評論 2 372

推薦閱讀更多精彩內容