問題
Implement regular expression matching with support for '.' and '*'.
'.' Matches any single character.
'*' Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).
The function prototype should be:
bool isMatch(const char *s, const char *p)
例子
isMatch("aa","a") → false
isMatch("aa","aa") → true
isMatch("aaa","aa") → false
isMatch("aa", "a*") → true
isMatch("aa", ".*") → true
isMatch("ab", ".*") → true
isMatch("aab", "c*a*b") → true
分析
首先要理解正則表達(dá)式的規(guī)則:
- '.'代表任意字符,不可為空字符;
- '*'表示前一個字符重復(fù)n次,n>=0.
按照定義,'*'之前必須要有一個字符。
考慮使用動態(tài)規(guī)劃:
狀態(tài)表
dp[i][j],表示s[0, i - 1]和p[0, j - 1]是否匹配初始狀態(tài)
dp[0][0] = true s為空,p為空,必然匹配;
dp[i][0] = false, i >= 1 s非空,p為空,必然不匹配;
dp[0][j] = j > 1 && p[j - 1] == '*' && dp[0][j - 2], j >= 1
注:s為空。當(dāng)p的長度為1時,必然不匹配(不管是'*', '.'還是其他字符);當(dāng)p的長度大于1時,s和p[0, j - 1]匹配的充要條件是p[j - 1] = '*',并且dp[0][j - 2]為true. 舉個例子,長度為n的p可以被表示為p[0, j - 3]a*p[j, n],其中p[j - 1] = '*',p[j - 2] = 'a'。那么p[0, j - 3]a*和s匹配的唯一條件就是p[0, j - 3]和s匹配,也就是dp[0][j - 2]為true.狀態(tài)轉(zhuǎn)移方程
dp[i][j] = dp[i - 1][j - 1] && (s[i - 1] == p[j - 1] || p[j - 1] == '.'); if p[j - 1] != '*'
dp[i][j] = dp[i][j - 2] || ((s[i - 1] == p[j - 2] || p[j - 2] == '.') && dp[i - 1][j]); if p[j - 1] == '*'
注:dp[i][j] = dp[i][j - 2]指的是'*'重復(fù)了0次,即p[j - 2, j - 1]這段可以理解成空串;dp[i][j] = (s[i - 1] == p[j - 2] || p[j - 2] == '.') && dp[i - 1][j]指的是'*'重復(fù)了n(n>=1)次,(s[i - 1] == p[j - 2] || p[j - 2] == '.') && dp[i - 1][j]相當(dāng)于重復(fù)了1次,然后從狀態(tài)表中查找剩下的n-1次重復(fù)。
要點(diǎn)
dp
時間復(fù)雜度
O(mn)
空間復(fù)雜度
O(mn)
代碼
class Solution {
public:
bool isMatch(string s, string p) {
int m = s.size(), n = p.size();
vector<vector<bool>> dp(m + 1, vector<bool>(n + 1, false));
dp[0][0] = true;
for (int i = 1; i <= m; i++)
dp[i][0] = false;
for (int j = 1; j <= n; j++)
dp[0][j] = j > 1 && p[j - 1] == '*' && dp[0][j - 2];
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
if (p[j - 1] != '*')
dp[i][j] = dp[i - 1][j - 1] && (s[i - 1] == p[j - 1] || p[j - 1] == '.');
else
dp[i][j] = dp[i][j - 2] || ((s[i - 1] == p[j - 2] || p[j - 2] == '.') && dp[i - 1][j]);
return dp[m][n];
}
};