如何選擇激活函數(shù)

激活函數(shù)在設(shè)計(jì)神經(jīng)網(wǎng)絡(luò)上很關(guān)鍵。隱藏層的激活函數(shù)影響的是學(xué)習(xí),輸出層影響的是輸出。

概述:
1.激活函數(shù)
2.隱藏層的激活函數(shù)
3.輸出層的激活函數(shù)

激活函數(shù)

激活函數(shù)定義了輸入的加權(quán)和是如何被轉(zhuǎn)化成輸出的。

一個(gè)神經(jīng)網(wǎng)絡(luò)通常有三個(gè)部分:輸入層,隱藏層,輸出層。
所有隱藏層的激活函數(shù)一般相同,輸出層一般不同。激活函數(shù)一般可微。

隱藏層的激活函數(shù)

Rectified Linear Activation (ReLU)
Logistic (Sigmoid)
Hyperbolic Tangent (Tanh)

ReLU:max(0.0, x)

from matplotlib import pyplot
 
# rectified linear function
def rectified(x):
    return max(0.0, x)
 
# define input data
inputs = [x for x in range(-10, 10)]
# calculate outputs
outputs = [rectified(x) for x in inputs]
# plot inputs vs outputs
pyplot.plot(inputs, outputs)
pyplot.show()

Sigmoid:1.0 / (1.0 + e^-x)


# example plot for the sigmoid activation function
from math import exp
from matplotlib import pyplot
 
# sigmoid activation function
def sigmoid(x):
    return 1.0 / (1.0 + exp(-x))
 
# define input data
inputs = [x for x in range(-10, 10)]
# calculate outputs
outputs = [sigmoid(x) for x in inputs]
# plot inputs vs outputs
pyplot.plot(inputs, outputs)
pyplot.show()

tanh:

# example plot for the tanh activation function
from math import exp
from matplotlib import pyplot
 
# tanh activation function
def tanh(x):
    return (exp(x) - exp(-x)) / (exp(x) + exp(-x))
 
# define input data
inputs = [x for x in range(-10, 10)]
# calculate outputs
outputs = [tanh(x) for x in inputs]
# plot inputs vs outputs
pyplot.plot(inputs, outputs)
pyplot.show()

如何選擇一個(gè)隱藏層激活函數(shù):


image.png

輸出層

Linear
Logistic (Sigmoid)
Softmax

線(xiàn)形的并不改變什么,而是直接返回值。


# example plot for the linear activation function
from matplotlib import pyplot
 
# linear activation function
def linear(x):
    return x
 
# define input data
inputs = [x for x in range(-10, 10)]
# calculate outputs
outputs = [linear(x) for x in inputs]
# plot inputs vs outputs
pyplot.plot(inputs, outputs)
pyplot.show()

softmax和概率相關(guān)
sigmoid

如何選擇:
回歸問(wèn)題用線(xiàn)性,
Binary Classification: One node, sigmoid activation.
Multiclass Classification: One node per class, softmax activation.

Multilabel Classification: One node per class, sigmoid activation.
image.png
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀(guān)點(diǎn),簡(jiǎn)書(shū)系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,119評(píng)論 6 531
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,382評(píng)論 3 415
  • 文/潘曉璐 我一進(jìn)店門(mén),熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人,你說(shuō)我怎么就攤上這事。” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 176,038評(píng)論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀(guān)的道長(zhǎng)。 經(jīng)常有香客問(wèn)我,道長(zhǎng),這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 62,853評(píng)論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 71,616評(píng)論 6 408
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 55,112評(píng)論 1 323
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,192評(píng)論 3 441
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 42,355評(píng)論 0 288
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,869評(píng)論 1 334
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 40,727評(píng)論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 42,928評(píng)論 1 369
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,467評(píng)論 5 358
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,165評(píng)論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 34,570評(píng)論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 35,813評(píng)論 1 282
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 51,585評(píng)論 3 390
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 47,892評(píng)論 2 372

推薦閱讀更多精彩內(nèi)容