關于海量數據處理問題,通過最近的面試可以看出這是一個經常會問的問題。本篇文章基于實際的面試問題,總結關于海量數據處理的常用算法以及針對這些實際面試問題提出解決方案。
一、海量數據處理
所謂海量數據處理,無非就是基于海量數據上的存儲、處理、操作。何謂海量,就是數據量太大,所以導致要么是無法在較短時間內迅速解決,要么是數據太大,導致無法一次性裝入內存。
那解決辦法呢?
針對時間,我們可以采用巧妙的算法搭配合適的數據結構,如Bloom filter/Hash/bit-map/堆/trie樹。
針對空間,無非就一個辦法:大而化小,分而治之(hash映射)。
二、算法/數據結構基礎
1.Bloom Filter
Bloom Filter(BF)是一種空間效率很高的隨機數據結構,它利用位數組很簡潔地表示一個集合,并能判斷一個元素是否屬于這個集合。它是一個判斷元素是否存在集合的快速的概率算法。Bloom Filter有可能會出現錯誤判斷,但不會漏掉判斷。也就是Bloom Filter判斷元素不再集合,那肯定不在。如果判斷元素存在集合中,有一定的概率判斷錯誤。因此,Bloom Filter不適合那些“零錯誤”的應用場合。
而在能容忍低錯誤率的應用場合下,Bloom Filter比其他常見的算法(如hash,折半查找)極大節省了空間。
適用范圍
可以用來實現數據字典,進行數據的判重,或者集合求交集
2.Hash
Hash,一般翻譯做“散列”,也有直接音譯為“哈?!钡?,就是把任意長度的輸入(又叫做預映射, pre-image),通過散列算法,變換成固定長度的輸出,該輸出就是散列值。這種轉換是一種壓縮映射,也就是,散列值的空間通常遠小于輸入的空間,不同的輸入可能會散列成相同的輸出,而不可能從散列值來唯一的確定輸入值。簡單的說就是一種將任意長度的消息壓縮到某一固定長度的消息摘要的函數。
具體參考:十一、從頭到尾解析Hash表算法
3. Bit-map
所謂的Bit-map就是用一個bit位來標記某個元素對應的值。由于采用了Bit為單位來存儲數據,因此在存儲空間方面,可以大大節省。
如果說了這么多還沒明白什么是Bit-map,那么我們來看一個具體的例子,假設我們要對0-7內的5個元素(4,7,2,5,3)排序(這里假設這些元素沒有重復)。那么我們就可以采用Bit-map的方法來達到排序的目的。要表示8個數,我們就只需要8個Bit(1Bytes),首先我們開辟1Byte的空間,將這些空間的所有Bit位都置為0(如下圖:)然后遍歷這5個元素,首先第一個元素是4,那么就把4對應的位置為1(可以這樣操作 p+(i/8)|(0x01<<(i%8)) 當然了這里的操作涉及到Big-ending和Little-ending的情況,這里默認為Big-ending),因為是從零開始的,所以要把第五位置為一(如下圖):
然后再處理第二個元素7,將第八位置為1,,接著再處理第三個元素,一直到最后處理完所有的元素,將相應的位置為1,這時候的內存的Bit位的狀態如下:
具體參考:數據結構:位圖法
4.堆
堆是一種特殊的二叉樹,具備以下兩種性質
1)每個節點的值都大于(或者都小于,稱為最小堆)其子節點的值
2)樹是完全平衡的,并且最后一層的樹葉都在最左邊這樣就定義了一個最大堆。
如下圖用一個數組來表示堆:
5.trie樹
下面我們有and,as,at,cn,com這些關鍵詞,那么如何構建trie樹呢?
從上面的圖中,我們或多或少的可以發現一些好玩的特性。
第一:根節點不包含字符,除根節點外的每一個子節點都包含一個字符。
第二:從根節點到某一節點,路徑上經過的字符連接起來,就是該節點對應的字符串。
第三:每個單詞的公共前綴作為一個字符節點保存。
適用范圍:
前綴統計,詞頻統計。
具體參考:6天通吃樹結構—— 第五天 Trie樹
6.外排序
適用范圍:
大數據的排序,去重
** 基本原理及要點:**
外部排序的兩個獨立階段:
1)首先按內存大小,將外存上含n個記錄的文件分成若干長度L的子文件或段。依次讀入內存并利用有效的內部排序對他們進行排序,并將排序后得到的有序字文件重新寫入外存,通常稱這些子文件為歸并段。
2)對這些歸并段進行逐趟歸并,使歸并段逐漸由小到大,直至得到整個有序文件為之。
外排序的優化方法:置換選擇 敗者樹原理,最優歸并樹
具體參考:選擇置換+敗者樹搞定外部排序
三、面試問題解決
①、海量日志數據,提取出某日訪問百度次數最多的那個IP。
算法思想:分而治之+Hash
1.IP地址最多有2^32=4G種取值情況,所以不能完全加載到內存中處理;
2.可以考慮采用“分而治之”的思想,按照IP地址的Hash(IP)%1024值,把海量IP日志分別存儲到1024個小文件中。這樣,每個小文件最多包含4MB個IP地址;
3.對于每一個小文件,可以構建一個IP為key,出現次數為value的Hash map,同時記錄當前出現次數最多的那個IP地址;
4.可以得到1024個小文件中的出現次數最多的IP,再依據常規的排序算法得到總體上出現次數最多的IP;
②、 搜索引擎會通過日志文件把用戶每次檢索使用的所有檢索串都記錄下來,每個查詢串的長度為1-255字節。假設目前有一千萬個記錄(這些查詢串的重復度比較高,雖然總數是1千萬,但如果除去重復后,不超過3百萬個。一個查詢串的重復度越高,說明查詢它的用戶越多,也就是越熱門。),請你統計最熱門的10個查詢串,要求使用的內存不能超過1G。
可以在內存中處理,典型的Top K算法
算法思想:hashmap+堆
1.先對這批海量數據預處理,在O(N)的時間內用Hash表完成統計;
2.借助堆這個數據結構,找出Top K,時間復雜度為O(N*logK)。
或者:采用trie樹,關鍵字域存該查詢串出現的次數,沒有出現為0。最后用10個元素的最小推來對出現頻率進行排序。
③、有一個1G大小的一個文件,里面每一行是一個詞,詞的大小不超過16字節,內存限制大小是1M。返回頻數最高的100個詞。
算法思想:分而治之 + hash統計 + 堆排序
1.順序讀文件中,對于每個詞x,取hash(x)%5000,然后按照該值存到5000個小文件(記為x0,x1,...x4999)中。這樣每個文件大概是200k左右。如果其中的有的文件超過了1M大小,還可以按照類似的方法繼續往下分,直到分解得到的小文件的大小都不超過1M。
2.對每個小文件,采用trie樹/hash_map等統計每個文件中出現的詞以及相應的頻率。
3.取出出現頻率最大的100個詞(可以用含100個結點的最小堆)后,再把100個詞及相應的頻率存入文件,這樣又得到了5000個文件。最后就是把這5000個文件進行歸并(類似于歸并排序)的過程了。
④、有10個文件,每個文件1G,每個文件的每一行存放的都是用戶的query,每個文件的query都可能重復。要求你按照query的頻度排序。
方案1:
算法思想:分而治之 + hash統計 + 堆排序
順序讀取10個文件,按照hash(query)%10的結果將query寫入到另外10個文件中。這樣新生成的文件每個的大小大約也1G,大于1G繼續按照上述思路分。
找一臺內存在2G左右的機器,依次對用hash_map(query, query_count)來統計每個query出現的次數。利用快速/堆/歸并排序按照出現次數進行排序。將排序好的query和對應的query_cout輸出到文件中。這樣得到了10個排好序的文件(記為)。
對這10個文件進行歸并排序(內排序與外排序相結合)。
方案2:
算法思想:hashmap+堆
一般query的總量是有限的,只是重復的次數比較多而已,可能對于所有的query,一次性就可以加入到內存了。這樣,我們就可以采用trie樹/hash_map等直接來統計每個query出現的次數,然后按出現次數做快速/堆/歸并排序就可以了。
⑤、 給定a、b兩個文件,各存放50億個url,每個url各占64字節,內存限制是4G,讓你找出a、b文件共同的url
方案1:可以估計每個文件安的大小為5G×64=320G,遠遠大于內存限制的4G。所以不可能將其完全加載到內存中處理??紤]采取分而治之的方法。
**算法思想:分而治之 + hash統計 **
遍歷文件a,對每個url求取hash(url)%1000,然后根據所取得的值將url分別存儲到1000個小文件(記為a0,a1,...,a999)中。這樣每個小文件的大約為300M。
遍歷文件b,采取和a相同的方式將url分別存儲到1000小文件(記為b0,b1,...,b999)。這樣處理后,所有可能相同的url都在對應的小文件(a0vsb0,a1vsb1,...,a999vsb999)中,不對應的小文件不可能有相同的url。然后我們只要求出1000對小文件中相同的url即可。
求每對小文件中相同的url時,可以把其中一個小文件的url存儲到hash_set中。然后遍歷另一個小文件的每個url,看其是否在剛才構建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。
方案2:如果允許有一定的錯誤率,可以使用Bloom filter,4G內存大概可以表示340億bit。將其中一個文件中的url使用Bloom filter映射為這340億bit,然后挨個讀取另外一個文件的url,檢查是否與Bloom filter,如果是,那么該url應該是共同的url(注意會有一定的錯誤率)。
⑥、在2.5億個整數中找出不重復的整數,注,內存不足以容納這2.5億個整數。
采用2-Bitmap(每個數分配2bit,00表示不存在,01表示出現一次,10表示多次,11無意義)進行,共需內存2^32 * 2 bit=1 GB內存,還可以接受。然后掃描這2.5億個整數,查看Bitmap中相對應位,如果是00變01,01變10,10保持不變。所描完事后,查看bitmap,把對應位是01的整數輸出即可。
⑦、給40億個不重復的unsigned int的整數,沒排過序的,然后再給一個數,如何快速判斷這個數是否在那40億個數當中?
方案1:申請512M的內存,一個bit位代表一個unsigned int值。讀入40億個數,設置相應的bit位,讀入要查詢的數,查看相應bit位是否為1,為1表示存在,為0表示不存在。
方案2:因為2^32為40億多,所以給定一個數可能在,也可能不在其中;
這里我們把40億個數中的每一個用32位的二進制來表示
假設這40億個數開始放在一個文件中。
然后將這40億個數分成兩類:
1.最高位為0
2.最高位為1
并將這兩類分別寫入到兩個文件中,其中一個文件中數的個數<=20億,而另一個>=20億(這相當于折半了);
與要查找的數的最高位比較并接著進入相應的文件再查找
再然后把這個文件為又分成兩類:
1.次最高位為0
2.次最高位為1
并將這兩類分別寫入到兩個文件中,其中一個文件中數的個數<=10億,而另一個>=10億(這相當于折半了);
與要查找的數的次最高位比較并接著進入相應的文件再查找。
.......
以此類推,就可以找到了。