推薦系統簡介

推薦問題產生

信息過載

推薦問題解決方法

  • 基于內容
  • 基于協同過濾
  • 基于鄰域的方法
    • 基于用戶
    • 基于物品
  • 基于模型的方法
    • 隱語義模型等

推薦系統原理

推薦系統原理

推薦數據源

  • 要推薦物品或內容的元數據,例如關鍵字,基因描述等
  • 系統用戶的基本信息,例如性別,年齡等
  • 用戶對物品或者信息的偏好,根據應用本身的不同,可能包括用戶對物品的評分,用戶查看物品的記錄,用戶的購買記錄等。其實這些用戶的偏好信息可以分為兩類:
  • 顯式的用戶反饋:這類是用戶在網站上自然瀏覽或者使用網站以外,顯式的提供反饋信息,例如用戶對物品的評分,或者對物品的評論。
  • 隱式的用戶反饋:這類是用戶在使用網站是產生的數據,隱式的反應了用戶對物品的喜好,例如用戶購買了某物品,用戶查看了某物品的信息等等。

基于內容的推薦

基于內容的推薦原理

這種基于內容的推薦機制的好處在于它能很好的建模用戶的口味,能提供更加精確的推薦。但它也存在以下幾個問題:

  • 需要對物品進行分析和建模,推薦的質量依賴于對物品模型的完整和全面程度。
  • 物品相似度的分析僅僅依賴于物品本身的特征,這里沒有考慮人對物品的態度。
  • 因為需要基于用戶以往的喜好歷史做出推薦,所以對于新用戶有“冷啟動”的問題。

協同過濾推薦

基于用戶的協同過濾

基于用戶的協同過濾算法原理

假設用戶 A 喜歡物品 A,物品 C,用戶 B 喜歡物品 B,用戶 C 喜歡物品 A ,物品 C 和物品 D;從這些用戶的歷史喜好信息中,我們可以發現用戶 A 和用戶 C 的口味和偏好是比較類似的,同時用戶 C 還喜歡物品 D,那么我們可以推斷用戶 A 可能也喜歡物品 D,因此可以將物品 D 推薦給用戶 A。

基于物品的協同過濾

基于物品的協同過濾算法原理

假設用戶 A 喜歡物品 A 和物品 C,用戶 B 喜歡物品 A,物品 B 和物品 C,用戶 C 喜歡物品 A,從這些用戶的歷史喜好可以分析出物品 A 和物品 C 時比較類似的,喜歡物品 A 的人都喜歡物品 C,基于這個數據可以推斷用戶 C 很有可能也喜歡物品 C,所以系統會將物品 C 推薦給用戶 C。

基于模型的協同過濾

基于模型的協同過濾推薦就是基于樣本的用戶喜好信息,訓練一個推薦模型,然后根據實時的用戶喜好的信息進行預測,計算推薦。

小結

基于協同過濾的推薦機制是現今應用最為廣泛的推薦機制,它有以下幾個顯著的優點:

  • 它不需要對物品或者用戶進行嚴格的建模,而且不要求物品的描述是機器可理解的,所以這種方法也是領域無關的。
  • 這種方法計算出來的推薦是開放的,可以共用他人的經驗,很好的支持用戶發現潛在的興趣偏好。

而它也存在以下幾個問題:

  • 方法的核心是基于歷史數據,所以對新物品和新用戶都有“冷啟動”的問題。
  • 推薦的效果依賴于用戶歷史偏好數據的多少和準確性。
  • 在大部分的實現中,用戶歷史偏好是用稀疏矩陣進行存儲的,而稀疏矩陣上的計算有些明顯的問題,包括可能少部分人的錯誤偏好會對推薦的準確度有很大的影響等等。
  • 對于一些特殊品味的用戶不能給予很好的推薦。
  • 由于以歷史數據為基礎,抓取和建模用戶的偏好后,很難修改或者根據用戶的使用演變,從而導致這個方法不夠靈活。

推薦系統實踐

推薦流程圖
基本推薦算法

參考文獻

http://blog.163.com/lnhenrylee@126/blog/static/2414832520123269713813/

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,283評論 6 530
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 97,947評論 3 413
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,094評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,485評論 1 308
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,268評論 6 405
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,817評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 42,906評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,039評論 0 285
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,551評論 1 331
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,502評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,662評論 1 366
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,188評論 5 356
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 43,907評論 3 345
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,304評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,563評論 1 281
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,255評論 3 389
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,637評論 2 370

推薦閱讀更多精彩內容