數據傾斜調優
- 絕大多數task執行得都非常快,但個別task執行極慢。比如,總共有1000個task,997個task都在1分鐘之內執行完了,但是剩余兩三個task卻要一兩個小時,這種情況很常見
- 原本能夠正常執行的Spark作業,某天突然報出OOM(內存溢出)異常,觀察異常棧,是我們寫的業務代碼造成的。這種情況比較少見
數據傾斜發生的原因:
在進行shuffle的時候,必須將各個節點上相同的key拉取到某個節點上的一個task來進行處理,比如按照key進行聚合或join等操作。此時如果某個key對應的數據量特別大的話,就會發生數據傾斜,因此出現數據傾斜的時候,Spark作業看起來會運行得非常緩慢,甚至可能因為某個task處理的數據量過大導致內存溢出。
數據傾斜只會發生在shuffle過程中 distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup、repartition等
問題分析
某個task執行特別慢的情況
首先要看的,就是數據傾斜發生在第幾個stage中
如果是用yarn-client模式提交,那么本地是直接可以看到log的,可以在log中找到當前運行到了第幾個stage
如果是用yarn-cluster模式提交,則可以通過Spark Web UI來查看當前運行到了第幾個stage。
此外,無論是使用yarn-client模式還是yarn-cluster模式,我們都可以在Spark Web UI上深入看一下當前這個stage各個task分配的數據量,從而進一步確定是不是task分配的數據不均勻導致了數據傾斜
知道數據傾斜發生在哪一個stage之后,接著我們就需要根據stage劃分原理,推算出來發生傾斜的那個stage對應代碼中的哪一部分(Spark是根據shuffle類算子來進行stage的劃分)
某個task莫名其妙內存溢出的情況
看log的異常棧,通過異常棧信息就可以定位到你的代碼中哪一行發生了內存溢出。然后在那行代碼附近找找,一般也會有shuffle類算子,此時很可能就是這個算子導致了數據傾斜。不能單純靠偶然的內存溢出就判定發生了數據傾斜。因為自己編寫的代碼的bug,以及偶然出現的數據異常,也可能會導致內存溢出
查看導致數據傾斜的key的數據分布情況
知道了數據傾斜發生在哪里之后,通常需要分析一下那個執行了shuffle操作并且導致了數據傾斜的RDD表。查看一下其中key的分布情況,這主要是為之后選擇哪一種技術方案提供依據。針對不同的key分布與不同的shuffle算子組合起來的各種情況,可能需要選擇不同的技術方案來解決
有很多種查看key分布的方式
如果是Spark SQL中的group by、join語句導致的數據傾斜,那么就查詢一下SQL中使用的表的key分布情況
如果是對Spark RDD執行shuffle算子導致的數據傾斜,那么可以在Spark作業中加入查看key分布的代碼,比如RDD.countByKey()。然后對統計出來的各個key出現的次數,collect/take到客戶端打印一下,就可以看到key的分布情況
解決方案
方案一:使用Hive ETL預處理數據
適用場景:導致數據傾斜的是hive表。如果該Hive表中的數據本身很不均勻,而且業務場景需要頻繁使用Spark對Hive表執行某個分析操作,那么比較適合使用這種技術方案
實現思路:可以評估一下,是否可以通過Hive來進行數據預處理(即通過Hive ETL預先對數據按照key進行聚合,或者是預先和其他表進行join),然后在Spark作業中針對的數據源就不是原來的Hive表了,而是預處理后的Hive表。此時由于數據已經預先進行過聚合或join操作了,那么在Spark作業中也就不需要使用原先的shuffle類算子執行這類操作了。
方案優點:實現起來簡單便捷,效果還非常好,完全規避掉了數據傾斜,Spark作業的性能會大幅度提升。
方案缺點:Hive ETL中還是會發生數據傾斜。
在一些Java系統與Spark結合使用的項目中,會出現Java代碼頻繁調用Spark作業的場景,而且對Spark作業的執行性能要求很高,就比較適合使用這種方案。將數據傾斜提前到上游的Hive ETL,每天僅執行一次,只有那一次是比較慢的,而之后每次Java調用Spark作業時,執行速度都會很快,能夠提供更好的用戶體驗
用戶通過Java Web系統提交數據分析統計任務,后端通過Java提交Spark作業進行數據分析統計。要求Spark作業速度必須要快
方案二:過濾少數導致傾斜的key
適用場景:如果發現導致傾斜的key就少數幾個,而且對計算本身的影響并不大的話
實現思路:將導致數據傾斜的key給過濾掉之后,這些key就不會參與計算了
方案優點:實現簡單,而且效果也很好,可以完全規避掉數據傾斜。
方案缺點:適用場景不多,大多數情況下,導致傾斜的key還是很多的,并不是只有少數幾個。
方案三:提高shuffle操作的并行度
處理數據傾斜最簡單的一種方案
實現思路:在對RDD執行shuffle算子時,給shuffle算子傳入一個參數,比如reduceByKey(1000),該參數就設置了這個shuffle算子執行時shuffle read task的數量。對于Spark SQL中的shuffle類語句,比如group by、join等,需要設置一個參數,即spark.sql.shuffle.partitions,該參數代表了shuffle read task的并行度,該值默認是200,對于很多場景來說都有點過小。
實現原理:增加shuffle read task的數量,可以讓原本分配給一個task的多個key分配給多個task,從而讓每個task處理比原來更少的數據。
方案優點:實現起來比較簡單,可以有效緩解和減輕數據傾斜的影響。
方案缺點:只是緩解了數據傾斜而已,沒有徹底根除問題,根據實踐經驗來看,其效果有限。
該方案通常無法徹底解決數據傾斜,因為如果出現一些極端情況,比如某個key對應的數據量有100萬,那么無論你的task數量增加到多少,這個對應著100萬數據的key肯定還是會分配到一個task中去處理,因此注定還是會發生數據傾斜的
方案四:兩階段聚合(局部聚合+全局聚合)
適用場景:對RDD執行reduceByKey等聚合類shuffle算子或者在Spark SQL中使用group by語句進行分組聚合時,比較適用這種方案。
實現思路:這個方案的核心實現思路就是進行兩階段聚合。第一次是局部聚合,先給每個key都打上一個隨機數,比如10以內的隨機數,此時原先一樣的key就變成不一樣的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就會變成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。接著對打上隨機數后的數據,執行reduceByKey等聚合操作,進行局部聚合,那么局部聚合結果,就會變成了(1_hello, 2) (2_hello, 2)。然后將各個key的前綴給去掉,就會變成(hello,2)(hello,2),再次進行全局聚合操作,就可以得到最終結果了,比如(hello, 4)。
方案優點:對于聚合類的shuffle操作導致的數據傾斜,效果是非常不錯的。通常都可以解決掉數據傾斜,或者至少是大幅度緩解數據傾斜,將Spark作業的性能提升數倍以上。
方案缺點:僅僅適用于聚合類的shuffle操作,適用范圍相對較窄。如果是join類的shuffle操作,還得用其他的解決方案。
// 第一步,給RDD中的每個key都打上一個隨機前綴。
JavaPairRDD<String, Long> randomPrefixRdd = rdd.mapToPair(
new PairFunction<Tuple2<Long,Long>, String, Long>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, Long> call(Tuple2<Long, Long> tuple)
throws Exception {
Random random = new Random();
int prefix = random.nextInt(10);
return new Tuple2<String, Long>(prefix + "_" + tuple._1, tuple._2);
}
});
// 第二步,對打上隨機前綴的key進行局部聚合。
JavaPairRDD<String, Long> localAggrRdd = randomPrefixRdd.reduceByKey(
new Function2<Long, Long, Long>() {
private static final long serialVersionUID = 1L;
@Override
public Long call(Long v1, Long v2) throws Exception {
return v1 + v2;
}
});
// 第三步,去除RDD中每個key的隨機前綴。
JavaPairRDD<Long, Long> removedRandomPrefixRdd = localAggrRdd.mapToPair(
new PairFunction<Tuple2<String,Long>, Long, Long>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<Long, Long> call(Tuple2<String, Long> tuple)
throws Exception {
long originalKey = Long.valueOf(tuple._1.split("_")[1]);
return new Tuple2<Long, Long>(originalKey, tuple._2);
}
});
// 第四步,對去除了隨機前綴的RDD進行全局聚合。
JavaPairRDD<Long, Long> globalAggrRdd = removedRandomPrefixRdd.reduceByKey(
new Function2<Long, Long, Long>() {
private static final long serialVersionUID = 1L;
@Override
public Long call(Long v1, Long v2) throws Exception {
return v1 + v2;
}
});
方案五:將reduce join轉為map join
適用場景:在對RDD使用join類操作,或者是在Spark SQL中使用join語句時,而且join操作中的一個RDD或表的數據量比較小(比如幾百M或者一兩G),比較適用此方案
實現思路:不使用join算子進行連接操作,而使用Broadcast變量與map類算子實現join操作,進而完全規避掉shuffle類的操作,徹底避免數據傾斜的發生和出現
實現原理:普通的join是會走shuffle過程的,而一旦shuffle,就相當于會將相同key的數據拉取到一個shuffle read task中再進行join,此時就是reduce join。但是如果一個RDD是比較小的,則可以采用廣播小RDD全量數據+map算子來實現與join同樣的效果,也就是map join,此時就不會發生shuffle操作,也就不會發生數據傾斜。
方案優點:對join操作導致的數據傾斜,效果非常好,因為根本就不會發生shuffle,也就根本不會發生數據傾斜。
方案缺點:適用場景較少,因為這個方案只適用于一個大表和一個小表的情況
方案六:采樣傾斜key并分拆join操作
適用場景:兩個RDD/Hive表進行join的時候,如果數據量都比較大,那么此時可以看一下兩個RDD/Hive表中的key分布情況。如果出現數據傾斜,是因為其中某一個RDD/Hive表中的少數幾個key的數據量過大,而另一個RDD/Hive表中的所有key都分布比較均勻,那么采用這個解決方案是比較合適的
實現原理:對于join導致的數據傾斜,如果只是某幾個key導致了傾斜,可以將少數幾個key分拆成獨立RDD,并附加隨機前綴打散成n份去進行join,此時這幾個key對應的數據就不會集中在少數幾個task上,而是分散到多個task進行join了。
方案優點:對于join導致的數據傾斜,如果只是某幾個key導致了傾斜,采用該方式可以用最有效的方式打散key進行join。而且只需要針對少數傾斜key對應的數據進行擴容n倍,不需要對全量數據進行擴容。避免了占用過多內存。
方案缺點:如果導致傾斜的key特別多的話,比如成千上萬個key都導致數據傾斜,那么這種方式也不適合。
方案七:使用隨機前綴和擴容RDD進行join
適用場景:如果在進行join操作時,RDD中有大量的key導致數據傾斜,那么進行分拆key也沒什么意義,此時就只能使用最后一種方案來解決問題了。
實現原理:將原先一樣的key通過附加隨機前綴變成不一樣的key,然后就可以將這些處理后的“不同key”分散到多個task中去處理,而不是讓一個task處理大量的相同key。該方案與“解決方案六”的不同之處就在于,上一種方案是盡量只對少數傾斜key對應的數據進行特殊處理,由于處理過程需要擴容RDD,因此上一種方案擴容RDD后對內存的占用并不大;而這一種方案是針對有大量傾斜key的情況,沒法將部分key拆分出來進行單獨處理,因此只能對整個RDD進行數據擴容,對內存資源要求很高
方案優點:對join類型的數據傾斜基本都可以處理,而且效果也相對比較顯著,性能提升效果非常不錯。
方案缺點:該方案更多的是緩解數據傾斜,而不是徹底避免數據傾斜。而且需要對整個RDD進行擴容,對內存資源要求很高。