每日top3熱點搜索詞統計Demo
1、數據格式:
日期 用戶 搜索詞 城市 平臺 版本
2、需求:
1、篩選出符合查詢條件(城市、平臺、版本)的數據
2、統計出每天搜索uv排名前3的搜索詞
3、按照每天的top3搜索詞的uv搜索總次數,倒序排序
4、將數據保存到hive表中
3、實現思路:
- 1、針對原始數據(HDFS文件),獲取輸入的RDD
- 2、使用filter算子,去針對輸入RDD中的數據,進行數據過濾,過濾出符合查詢條件的數據;
- 2.1 普通的做法:直接在fitler算子函數中,使用外部的查詢條件(Map),但是,這樣做的話,是不是查詢條件Map,會發送到每一個task上一份副本。(性能并不好);
- 2.2 優化后的做法:將查詢條件,封裝為Broadcast廣播變量,在filter算子中使用Broadcast廣播變量進行數據篩選;
- 3、將數據轉換為“(日期搜索詞, 用戶)”格式,然后呢,對它進行分組,然后再次進行映射,對每天每個搜索詞的搜索用戶進行去重操作,并統計去重后的數量,即為每天每個搜索詞的uv。最后,獲得“(日期搜索詞, uv)” ;
- 4、將得到的每天每個搜索詞的uv,RDD,映射為元素類型為Row的RDD,將該RDD轉換為DataFrame;
- 5、將DataFrame注冊為臨時表,使用Spark SQL的開窗函數,來統計每天的uv數量排名前3的搜索詞,以及它的搜索uv,最后獲取,是一個DataFrame;
- 6、將DataFrame轉換為RDD,繼續操作,按照每天日期來進行分組,并進行映射,計算出每天的top3搜索詞的搜索uv的總數,然后將uv總數作為key,將每天的top3搜索詞以及搜索次數,拼接為一個字符串
- 7、按照每天的top3搜索總uv,進行排序,倒序排序
- 8、將排好序的數據,再次映射回來,變成“日期_搜索詞_uv”的格式
- 9、再次映射為DataFrame,并將數據保存到Hive中即可
package cn.spark.study.sql;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.broadcast.Broadcast;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.hive.HiveContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import scala.Tuple2;
/**
* 每日top3熱點搜索詞統計案例
*/
public class DailyTop3Keyword {
@SuppressWarnings("deprecation")
public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setAppName("DailyTop3Keyword");
JavaSparkContext sc = new JavaSparkContext(conf);
HiveContext sqlContext = new HiveContext(sc.sc());
// 偽造出一份數據,查詢條件
// 備注:實際上,在工作中,這個查詢條件,是通過J2EE平臺插入到某個MySQL表中的
// 然后,在這里通過Spring框架和ORM框架(MyBatis),去提取MySQL表中的查詢條件
Map<String, List<String>> queryParamMap = new HashMap<String, List<String>>();
queryParamMap.put("city", Arrays.asList("beijing"));
queryParamMap.put("platform", Arrays.asList("android"));
queryParamMap.put("version", Arrays.asList("1.0", "1.2", "1.5", "2.0"));
// 根據我們實現思路中的分析,這里最合適的方式,
//是將該查詢參數Map封裝為一個Broadcast廣播變量
// 這樣可以進行優化,每個Worker節點,只拷貝一份數據即可
final Broadcast<Map<String, List<String>>> queryParamMapBroadcast =
sc.broadcast(queryParamMap);
// 1、針對HDFS文件中的日志,獲取輸入RDD
JavaRDD<String> rawRDD = sc.textFile("hdfs://spark1:9000/spark-study/keyword.txt");
// 2、使用查詢參數Map廣播變量,進行篩選
JavaRDD<String> filterRDD = rawRDD.filter(new Function<String, Boolean>() {
private static final long serialVersionUID = 1L;
@Override
public Boolean call(String log) throws Exception {
// 切割原始日志,獲取城市、平臺和版本
String[] logSplited = log.split("\t");
String city = logSplited[3];
String platform = logSplited[4];
String version = logSplited[5];
// 與查詢條件進行比對,任何一個條件,只要該條件設置了,且日志中的數據沒有滿足條件
// 則直接返回false,過濾該日志
// 否則,如果所有設置的條件,都有日志中的數據,則返回true,保留日志
Map<String, List<String>> queryParamMap = queryParamMapBroadcast.value();
List<String> cities = queryParamMap.get("city");
if(cities.size() > 0 && !cities.contains(city)) {
return false;
}
List<String> platforms = queryParamMap.get("platform");
if(platforms.size() > 0 && !platforms.contains(platform)) {
return false;
}
List<String> versions = queryParamMap.get("version");
if(versions.size() > 0 && !versions.contains(version)) {
return false;
}
return true;
}
});
// 3、過濾出來的原始日志,映射為(日期_搜索詞, 用戶)的格式
JavaPairRDD<String, String> dateKeywordUserRDD = filterRDD.mapToPair(
new PairFunction<String, String, String>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, String> call(String log) throws Exception {
String[] logSplited = log.split("\t");
String date = logSplited[0];
String user = logSplited[1];
String keyword = logSplited[2];
return new Tuple2<String, String>(date + "_" + keyword, user);
}
});
// 進行分組,獲取每天每個搜索詞,有哪些用戶搜索了(沒有去重)
JavaPairRDD<String, Iterable<String>> dateKeywordUsersRDD = dateKeywordUserRDD.groupByKey();
// 對每天每個搜索詞的搜索用戶,執行去重操作,獲得其uv
JavaPairRDD<String, Long> dateKeywordUvRDD = dateKeywordUsersRDD.mapToPair(
new PairFunction<Tuple2<String,Iterable<String>>, String, Long>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, Long> call(
Tuple2<String, Iterable<String>> dateKeywordUsers) throws Exception {
String dateKeyword = dateKeywordUsers._1;
Iterator<String> users = dateKeywordUsers._2.iterator();
// 對用戶進行去重,并統計去重后的數量
List<String> distinctUsers = new ArrayList<String>();
while(users.hasNext()) {
String user = users.next();
if(!distinctUsers.contains(user)) {
distinctUsers.add(user);
}
}
// 獲取uv
long uv = distinctUsers.size();
return new Tuple2<String, Long>(dateKeyword, uv);
}
});
//4、 將每天每個搜索詞的uv數據,轉換成DataFrame
JavaRDD<Row> dateKeywordUvRowRDD = dateKeywordUvRDD.map(
new Function<Tuple2<String,Long>, Row>() {
private static final long serialVersionUID = 1L;
@Override
public Row call(Tuple2<String, Long> dateKeywordUv) throws Exception {
String date = dateKeywordUv._1.split("_")[0];
String keyword = dateKeywordUv._1.split("_")[1];
long uv = dateKeywordUv._2;
return RowFactory.create(date, keyword, uv);
}
});
List<StructField> structFields = Arrays.asList(
DataTypes.createStructField("date", DataTypes.StringType, true),
DataTypes.createStructField("keyword", DataTypes.StringType, true),
DataTypes.createStructField("uv", DataTypes.LongType, true));
StructType structType = DataTypes.createStructType(structFields);
// 將該RDD轉換為DataFrame
DataFrame dateKeywordUvDF = sqlContext.createDataFrame(dateKeywordUvRowRDD, structType);
// 5、使用Spark SQL的開窗函數,統計每天搜索uv排名前3的熱點搜索詞
dateKeywordUvDF.registerTempTable("daily_keyword_uv");
DataFrame dailyTop3KeywordDF = sqlContext.sql(""
+ "SELECT date,keyword,uv "
+ "FROM ("
+ "SELECT "
+ "date,"
+ "keyword,"
+ "uv,"
+ "row_number() OVER (PARTITION BY date ORDER BY uv DESC) rank "
+ "FROM daily_keyword_uv"
+ ") tmp "
+ "WHERE rank<=3");
// 6、將DataFrame轉換為RDD,然后映射,計算出每天的top3搜索詞的搜索uv總數
JavaRDD<Row> dailyTop3KeywordRDD = dailyTop3KeywordDF.javaRDD();
JavaPairRDD<String, String> top3DateKeywordUvRDD = dailyTop3KeywordRDD.mapToPair(
new PairFunction<Row, String, String>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, String> call(Row row)
throws Exception {
String date = String.valueOf(row.get(0));
String keyword = String.valueOf(row.get(1));
Long uv = Long.valueOf(String.valueOf(row.get(2)));
return new Tuple2<String, String>(date, keyword + "_" + uv);
}
});
JavaPairRDD<String, Iterable<String>> top3DateKeywordsRDD = top3DateKeywordUvRDD.groupByKey();
JavaPairRDD<Long, String> uvDateKeywordsRDD = top3DateKeywordsRDD.mapToPair(
new PairFunction<Tuple2<String,Iterable<String>>, Long, String>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<Long, String> call(
Tuple2<String, Iterable<String>> tuple)
throws Exception {
String date = tuple._1;
Long totalUv = 0L;
String dateKeywords = date;
Iterator<String> keywordUvIterator = tuple._2.iterator();
while(keywordUvIterator.hasNext()) {
String keywordUv = keywordUvIterator.next();
Long uv = Long.valueOf(keywordUv.split("_")[1]);
totalUv += uv;
dateKeywords += "," + keywordUv;
}
return new Tuple2<Long, String>(totalUv, dateKeywords);
}
});
// 7、按照每天的總搜索uv進行倒序排序
JavaPairRDD<Long, String> sortedUvDateKeywordsRDD = uvDateKeywordsRDD.sortByKey(false);
//8、再次進行映射,將排序后的數據,映射回原始的格式,Iterable<Row>
JavaRDD<Row> sortedRowRDD = sortedUvDateKeywordsRDD.flatMap(
new FlatMapFunction<Tuple2<Long,String>, Row>() {
private static final long serialVersionUID = 1L;
@Override
public Iterable<Row> call(Tuple2<Long, String> tuple)
throws Exception {
String dateKeywords = tuple._2;
String[] dateKeywordsSplited = dateKeywords.split(",");
String date = dateKeywordsSplited[0];
List<Row> rows = new ArrayList<Row>();
rows.add(RowFactory.create(date,
dateKeywordsSplited[1].split("_")[0],
Long.valueOf(dateKeywordsSplited[1].split("_")[1])));
rows.add(RowFactory.create(date,
dateKeywordsSplited[2].split("_")[0],
Long.valueOf(dateKeywordsSplited[2].split("_")[1])));
rows.add(RowFactory.create(date,
dateKeywordsSplited[3].split("_")[0],
Long.valueOf(dateKeywordsSplited[3].split("_")[1])));
return rows;
}
});
//9、將最終的數據,轉換為DataFrame,并保存到Hive表中
DataFrame finalDF = sqlContext.createDataFrame(sortedRowRDD, structType);
finalDF.saveAsTable("daily_top3_keyword_uv");
sc.close();
}
}