只要學過 iOS 的人,都會對 strong、weak、copy等關鍵字應該都會很熟悉。weak 屬性關鍵字就是弱引用,它不會增加引用計數但卻能保證指針的安全訪問,在對象釋放后置為 nil,從而避免錯誤的內存訪問。主要為了解決循環引用的問題。
接下來,我們會從 objc 庫中的 NSObject.mm、 objc-weak.h 以及 objc-weak.mm 文件出發,去具體了解 weak 的實現過程。
weak 的內部結構
Runtime 維護了一個weak表,用于存儲指向某個對象的所有weak指針。weak 表是由單個自旋鎖管理的散列表。
weak表其實是一個hash表,key 是所指對象的指針,value是weak指針的地址(這個地址的值是所指向對象的地址)數組。
在下面涉及的源碼中,我們會看到以下幾個類型:
sideTable、weak_table_t、weak_entry_t 這幾個結構體。
struct SideTable {
// 自旋鎖,用來保證線程安全
spinlock_t slock;
// 引用計數表
RefcountMap refcnts;
// weak 表
weak_table_t weak_table;
...
};
SideTable,它用來管理引用計數表和 weak 表,并使用 spinlock_lock 自旋鎖來防止操作表結構時可能的競態條件。它用一個 64*128 大小的uint8_t 靜態數組作為 buffer 來保存所有的 SideTable 實例。這個結構體里面包含三個變量,第一個spinlock_t
,它是一個自旋鎖,用來保證線程安全。第二個RefcountMap
,是引用計數表,每個對象的引用計數保存在全局的引用計數表中,一個對象地址對應一個引用計數。第三個就是我們接下來要講的 weak 表,所有的 weak 變量會被加入到全局的weak表中,表的 key 是 weak 修飾的變量指向的對象, value 值就是 weak 修飾的變量。接下來,我們具體看看這個 weak 表
struct weak_table_t {
// 保存了所有指向指定對象的 weak 指針
weak_entry_t *weak_entries;
// 存儲空間,即 entries 的數目
size_t num_entries;
// 參與判斷引用計數輔助量
uintptr_t mask;
// hash key 最大偏移量
uintptr_t max_hash_displacement;
};
這個是全局弱引用的 hash 表。它的作用就是在對象執行 dealloc 的時候將所有指向該對象的 weak 指針的值設為 nil, 避免懸空指針。它使用不定類型對象的地址的 hash 化后的數值作為 key,用 weak_entry_t
類型的結構體對象作為 value。其中 weak_entry_t
是存儲在弱引用表中的一個內部結構體,它負責維護和存儲指向一個對象的所有弱引用 hash 表。其定義如下:
// 存儲在弱引用表中的一個內部結構體
#define WEAK_INLINE_COUNT 4
struct weak_entry_t {
DisguisedPtr<objc_object> referent; // 封裝 objc_object 指針,即 weak 修飾的變量指向的對象
union {
struct {
weak_referrer_t *referrers;
uintptr_t out_of_line : 1; // LSB 最低有效元 當標志位為0時,增加引用表指針緯度,
// 當其為0的時候, weak_referrer_t 成員將擴展為靜態數組型的 hash table
uintptr_t num_refs : PTR_MINUS_1; // 引用數值,這里記錄弱引用表中引用有效數字,即里面元素的數量
uintptr_t mask;
uintptr_t max_hash_displacement; // hash 元素上限閥值
};
struct {
// out_of_line=0 is LSB of one of these (don't care which)
weak_referrer_t inline_referrers[WEAK_INLINE_COUNT];
};
};
};
在 weak_entry_t
的結構中, DisguisedPtr<objc_object>
是對 objc_object *
指針及其一些操作進行的封裝,目的就是為了讓它給人看起來不會有內存泄露的樣子,其內容可以理解為對象的內存地址。out_of-line
成員為最低有效位,當其為 0 的時候,weak_referrer_t
成員將擴展為一個靜態數組型的 hash table。其實 weak_referrer
是objc_objcet 的別名,定義如下:typedef objc_object ** weak_referrer_t;
它通過一個二維指針地址偏移,用下標作為 hash 的 key,做成了一個弱引用散列。
下圖,就是weak表結構的總結:
[圖片上傳失敗...(image-149304-1524568324284)]
每個對象的 SideTable 中的 weak_table_t 都是全局 weak 表的入口,以引用計數對象為鍵找到其所記錄的 weak 修飾的對象。weak_entry_t 中的 referrers 有兩種形式,當 out_of_line 為 0 的時候,referrers 是一個靜態數組型的表,數組大小默認為 WEAK_INLINE_COUNT 大小,當 out_of_line 不為 0 的時候,referrers 是一個動態數組,內容隨之增加。
weak 實現原理的過程
當我們用 weak 修飾屬性的時候,它是怎么實現當所引用的對象被廢棄的時候,變量置為 nil,我們來探究一下。
{
id obj1 = [[NSObject alloc] init];
id __weak obj2 = obj1;
}
經過編譯期轉換之后,以上代碼會變成下面這樣
id obj2;
objc_initWeak(&obj2, obj1);
objc_destroyWeak(&obj2);
我們發現,weak 修飾符變量是通過 objc_initWeak 函數來初始化的,在變量作用域結束的時候通過 objc_destroyWeak 函數來釋放該變量的。接下來,我們看看這兩個函數的源碼。
id objc_initWeak(id *location, id newObj)
{
// 查看對象實例是否有效
// 無效對象直接導致指針釋放
if (!newObj) {
*location = nil;
return nil;
}
// 這里傳遞了三個 bool 數值
// 使用 template 進行常量參數傳遞是為了優化性能
return storeWeak<false/*old*/, true/*new*/, true/*crash*/>
(location, (objc_object*)newObj);
}
void objc_destroyWeak(id *location)
{
(void)storeWeak<true/*old*/, false/*new*/, false/*crash*/>
(location, nil);
}
對這兩個方法的分析后,我們發現它們都調用了storeWeak 這個函數,但是兩個方法傳入的參數卻稍有不同。
init 方法中,第一個參數為 weak 修飾的變量,第二個參數為引用計數對象。但在 destoryWeak 函數,第一參數依舊為 weak 修飾的變量,第二個參數為 nil。那這塊傳入不同的參數到底代表什么,我們繼續分析 storeWeak 這個函數。
// 更新一個弱引用變量
// 如果 HaveOld 是 true, 變量是個有效值,需要被及時清理。變量可以為 nil。
// 如果 HaveNew 是 true, 需要一個新的 value 來替換變量。變量可以為 nil
// 如果crashifdeallocation 是 ture ,那么如果 newObj 是 deallocating,或者 newObj 的類不支持弱引用,則該進程就會停止。
// 如果crashifdeallocation 是 false,那么 nil 會被存儲。
template <bool HaveOld, bool HaveNew, bool CrashIfDeallocating>
static id storeWeak(id *location, objc_object *newObj)
{
assert(HaveOld || HaveNew);
if (!HaveNew) assert(newObj == nil);
Class previouslyInitializedClass = nil;
id oldObj;
// 創建新舊散列表
SideTable *oldTable;
SideTable *newTable;
// Acquire locks for old and new values.
// 獲得新值和舊值的鎖存位置 (用地址作為唯一標示)
// Order by lock address to prevent lock ordering problems.
// 通過地址來建立索引標志,防止桶重復
// Retry if the old value changes underneath us.
// 下面指向的操作會改變舊值
retry:
if (HaveOld) {
// 如果 HaveOld 為 true ,更改指針,獲得以 oldObj 為索引所存儲的值地址
oldObj = *location;
oldTable = &SideTables()[oldObj];
} else {
oldTable = nil;
}
if (HaveNew) {
// 獲得以 newObj 為索引所存儲的值對象
newTable = &SideTables()[newObj];
} else {
newTable = nil;
}
// 對兩個 table 進行加鎖操作,防止多線程中競爭沖突
SideTable::lockTwo<HaveOld, HaveNew>(oldTable, newTable);
// location 應該與 oldObj 保持一致,如果不同,說明當前的 location 已經處理過 oldObj 可是又被其他線程所修改, 保證線程安全,這個判斷用來避免線程沖突重處理問題
if (HaveOld && *location != oldObj) {
SideTable::unlockTwo<HaveOld, HaveNew>(oldTable, newTable);
goto retry;
}
// Prevent a deadlock between the weak reference machinery
// and the +initialize machinery by ensuring that no
// weakly-referenced object has an un-+initialized isa.
// 防止弱引用之間發生死鎖,并且通過 +initialize 初始化構造器保證所有弱引用的 isa 非空指向
if (HaveNew && newObj) {
// 獲得新對象的 isa 指針
Class cls = newObj->getIsa();
// 判斷 isa 非空且已經初始化
if (cls != previouslyInitializedClass &&
!((objc_class *)cls)->isInitialized())
{
// 對兩個表解鎖
SideTable::unlockTwo<HaveOld, HaveNew>(oldTable, newTable);
_class_initialize(_class_getNonMetaClass(cls, (id)newObj));
// If this class is finished with +initialize then we're good.
// If this class is still running +initialize on this thread
// (i.e. +initialize called storeWeak on an instance of itself)
// then we may proceed but it will appear initializing and
// not yet initialized to the check above.
// Instead set previouslyInitializedClass to recognize it on retry.
// 如果該類已經完成執行 +initialize 方法是最好的,如果該類 + initialize 在線程中,例如 +initialize 正在調用storeWeak 方法,那么則需要手動對其增加保護策略,并設置 previouslyInitializedClass 指針進行標記然后重新嘗試
previouslyInitializedClass = cls;
goto retry;
}
}
// Clean up old value, if any. 清除舊值
if (HaveOld) {
weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
}
// Assign new value, if any. 分配新值
if (HaveNew) {
newObj = (objc_object *)weak_register_no_lock(&newTable->weak_table,
(id)newObj, location,
CrashIfDeallocating);
// weak_register_no_lock returns nil if weak store should be rejected
// 如果弱引用被釋放則該方法返回 nil
// Set is-weakly-referenced bit in refcount table.
// 在引用計數表中設置弱引用標記位
if (newObj && !newObj->isTaggedPointer()) {
newObj->setWeaklyReferenced_nolock();
}
// Do not set *location anywhere else. That would introduce a race.
*location = (id)newObj;
}
else {
// No new value. The storage is not changed.
}
SideTable::unlockTwo<HaveOld, HaveNew>(oldTable, newTable);
return (id)newObj;
}
以上就是 store_weak 這個函數的實現,它主要做了以下幾件事:
- 聲明了新舊散列表指針,因為 weak 修飾的變量如果之前已經指向一個對象,然后其再次改變指向另一個對象,那么按理來說我們需要釋放舊對象中該 weak 變量的記錄,也就是要將舊記錄刪除,然后在新記錄中添加。這里的新舊散列表就是這個作用。
- 根據新舊變量的地址獲取相應的 SideTable
- 對兩個表進行加鎖操作,防止多線程競爭沖突
- 進行線程沖突重處理判斷
- 判斷其 isa 是否為空,為空則需要進行初始化
- 如果存在舊值,調用 weak_unregister_no_lock 函數清除舊值
- 調用 weak_register_no_lock 函數分配新值
- 解鎖兩個表,并返回第二參數
初始化弱引用對象流程一覽
弱引用的初始化,從上文的分析可以看出,主要的操作部分就是在弱引用表的取鍵、查詢散列、創建弱引用等操作,可以總結出如下的流程圖:
舊對象解除注冊操作 weak_unregister_no_lock
void weak_unregister_no_lock(weak_table_t *weak_table, id referent_id,
id *referrer_id)
{
objc_object *referent = (objc_object *)referent_id;
objc_object **referrer = (objc_object **)referrer_id;
weak_entry_t *entry;
if (!referent) return;
if ((entry = weak_entry_for_referent(weak_table, referent))) {
remove_referrer(entry, referrer);
bool empty = true;
if (entry->out_of_line && entry->num_refs != 0) {
empty = false;
}
else {
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
if (entry->inline_referrers[i]) {
empty = false;
break;
}
}
}
if (empty) {
weak_entry_remove(weak_table, entry);
}
}
// Do not set *referrer = nil. objc_storeWeak() requires that the
// value not change.
}
該方法主要作用是將舊對象在 weak_table 中接觸 weak 指針的對應綁定。根據函數名,稱之為解除注冊操作。
來看看這個函數的邏輯。首先參數是 weak_table_t
表,鍵和值。聲明 weak_entry_t
變量,如果key,也就是引用計數對象為空,直接返回。根據全局入口表和鍵獲取對應的 weak_entry_t
對象,也就是 weak 表記錄。獲取到記錄后,將記錄表以及 weak 對象作為參數傳入 remove_referrer
函數中,這個函數就是解除操作。然后判斷這個 weak 記錄是否為空,如果為空,從全局記錄表中清除相應的引用計數對象的 weak 記錄表。
接下來,我們了解一下,如何獲取這個 weak_entry_t 這個變量。
static weak_entry_t *weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
{
assert(referent);
weak_entry_t *weak_entries = weak_table->weak_entries;
if (!weak_entries) return nil;
size_t index = hash_pointer(referent) & weak_table->mask;
size_t hash_displacement = 0;
while (weak_table->weak_entries[index].referent != referent) {
index = (index+1) & weak_table->mask;
hash_displacement++;
if (hash_displacement > weak_table->max_hash_displacement) {
return nil;
}
}
return &weak_table->weak_entries[index];
}
這個函數的邏輯就是先獲取全局 weak 表入口,然后將引用計數對象的地址進行 hash 化后與 weak_table->mask 做與操作,作為下標,在全局 weak 表中查找,若找到,返回這個對象的 weak 記錄表,若沒有,返回nil。
再來了解一下解除對象的函數:
static void remove_referrer(weak_entry_t *entry, objc_object **old_referrer)
{
if (! entry->out_of_line) {
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
if (entry->inline_referrers[i] == old_referrer) {
entry->inline_referrers[i] = nil;
return;
}
}
_objc_inform("Attempted to unregister unknown __weak variable "
"at %p. This is probably incorrect use of "
"objc_storeWeak() and objc_loadWeak(). "
"Break on objc_weak_error to debug.\n",
old_referrer);
objc_weak_error();
return;
}
size_t index = w_hash_pointer(old_referrer) & (entry->mask);
size_t hash_displacement = 0;
while (entry->referrers[index] != old_referrer) {
index = (index+1) & entry->mask;
hash_displacement++;
if (hash_displacement > entry->max_hash_displacement) {
_objc_inform("Attempted to unregister unknown __weak variable "
"at %p. This is probably incorrect use of "
"objc_storeWeak() and objc_loadWeak(). "
"Break on objc_weak_error to debug.\n",
old_referrer);
objc_weak_error();
return;
}
}
entry->referrers[index] = nil;
entry->num_refs--;
}
這個函數傳入的是 weak 對象,當 out_of_line 為0 時,遍歷數組,找到對應的對象,置nil,如果未找到,報錯并返回。當 out_of_line 不為0時,根據對象的地址 hash 化并和 mask 做與操作作為下標,查找相應的對象,若沒有,報錯并返回,若有,相應的置為 nil,并減少元素數量,即 num_refs 減 1。
新對象添加注冊操作 weak_register_no_lock
id weak_register_no_lock(weak_table_t *weak_table, id referent_id,
id *referrer_id, bool crashIfDeallocating)
{
objc_object *referent = (objc_object *)referent_id;
objc_object **referrer = (objc_object **)referrer_id;
if (!referent || referent->isTaggedPointer()) return referent_id;
// ensure that the referenced object is viable
bool deallocating;
if (!referent->ISA()->hasCustomRR()) {
deallocating = referent->rootIsDeallocating();
}
else {
BOOL (*allowsWeakReference)(objc_object *, SEL) =
(BOOL(*)(objc_object *, SEL))
object_getMethodImplementation((id)referent,
SEL_allowsWeakReference);
if ((IMP)allowsWeakReference == _objc_msgForward) {
return nil;
}
deallocating =
! (*allowsWeakReference)(referent, SEL_allowsWeakReference);
}
if (deallocating) {
if (crashIfDeallocating) {
_objc_fatal("Cannot form weak reference to instance (%p) of "
"class %s. It is possible that this object was "
"over-released, or is in the process of deallocation.",
(void*)referent, object_getClassName((id)referent));
} else {
return nil;
}
}
// now remember it and where it is being stored
weak_entry_t *entry;
if ((entry = weak_entry_for_referent(weak_table, referent))) {
append_referrer(entry, referrer);
}
else {
weak_entry_t new_entry;
new_entry.referent = referent;
new_entry.out_of_line = 0;
new_entry.inline_referrers[0] = referrer;
for (size_t i = 1; i < WEAK_INLINE_COUNT; i++) {
new_entry.inline_referrers[i] = nil;
}
weak_grow_maybe(weak_table);
weak_entry_insert(weak_table, &new_entry);
}
// Do not set *referrer. objc_storeWeak() requires that the
// value not change.
return referent_id;
}
一大堆 if-else, 主要是為了判斷該對象是不是 taggedPoint 以及是否正在調用 dealloca 等。下面操作開始,同樣是先獲取 weak 表記錄,如果獲取到,則調用 append_referrer 插入對象,若沒有,則新建一個 weak 表記錄,默認為 out_of_line,然后將新對象放到 0 下標位置,其他位置置為 nil 。下面兩個函數 weak_grow_maybe 是用來判斷是否需要重申請內存重 hash,weak_entry_insert 函數是用來將新建的 weak 表記錄插入到全局 weak 表中。插入時同樣是以對象地址的 hash 化和 mask 值相與作為下標來記錄的。
接下來看看 append_referrer 函數,源代碼如下:
static void append_referrer(weak_entry_t *entry, objc_object **new_referrer)
{
if (! entry->out_of_line) {
// Try to insert inline.
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
if (entry->inline_referrers[i] == nil) {
entry->inline_referrers[i] = new_referrer;
return;
}
}
// Couldn't insert inline. Allocate out of line.
weak_referrer_t *new_referrers = (weak_referrer_t *)
calloc(WEAK_INLINE_COUNT, sizeof(weak_referrer_t));
// This constructed table is invalid, but grow_refs_and_insert
// will fix it and rehash it.
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
new_referrers[i] = entry->inline_referrers[I];
}
entry->referrers = new_referrers;
entry->num_refs = WEAK_INLINE_COUNT;
entry->out_of_line = 1;
entry->mask = WEAK_INLINE_COUNT-1;
entry->max_hash_displacement = 0;
}
assert(entry->out_of_line);
if (entry->num_refs >= TABLE_SIZE(entry) * 3/4) {
return grow_refs_and_insert(entry, new_referrer);
}
size_t index = w_hash_pointer(new_referrer) & (entry->mask);
size_t hash_displacement = 0;
while (entry->referrers[index] != NULL) {
index = (index+1) & entry->mask;
hash_displacement++;
}
if (hash_displacement > entry->max_hash_displacement) {
entry->max_hash_displacement = hash_displacement;
}
weak_referrer_t &ref = entry->referrers[index];
ref = new_referrer;
entry->num_refs++;
}
當 out_of_line 為 0,并且靜態數組里面還有位置存放,那么直接存放并返回。如果沒有位置存放,則升級為動態數組,并加入。如果 out_of_line 不為 0,先判斷是否需要擴容,然后同樣的,使用對象地址的 hash 化和 mask 做與操作作為下標,找到相應的位置并插入。
對象的銷毀以及 weak 的置 nil 實現
釋放時,調用clearDeallocating
函數。clearDeallocating
函數首先根據對象地址獲取所有weak指針地址的數組,然后遍歷這個數組把其中的數據設為nil,最后把這個entry從weak表中刪除,最后清理對象的記錄。
當weak引用指向的對象被釋放時,又是如何去處理weak指針的呢?當釋放對象時,其基本流程如下:
- 調用 objc_release
- 因為對象的引用計數為0,所以執行dealloc
- 在dealloc 中,調用了_objc_rootDealloc 函數
- 在 _objc_rootDealloc 中,調用了 objec_dispose 函數
- 調用objc_destructInstance
- 最后調用 objc_clear_deallocating
objc_clear_deallocating的具體實現如下:
void objc_clear_deallocating(id obj)
{
assert(obj);
assert(!UseGC);
if (obj->isTaggedPointer()) return;
obj->clearDeallocating();
}
這個函數只是做一些判斷以及更深層次的函數調用,
void objc_object::sidetable_clearDeallocating()
{
SideTable& table = SideTables()[this];
// clear any weak table items
// clear extra retain count and deallocating bit
// (fixme warn or abort if extra retain count == 0 ?)
table.lock();
// 迭代器
RefcountMap::iterator it = table.refcnts.find(this);
if (it != table.refcnts.end()) {
if (it->second & SIDE_TABLE_WEAKLY_REFERENCED) {
weak_clear_no_lock(&table.weak_table, (id)this);
}
table.refcnts.erase(it);
}
table.unlock();
}
我們可以看到,在這個函數中,首先取出對象對應的SideTable實例,如果這個對象有關聯的弱引用,則調用weak_clear_no_lock
來清除對象的弱引用信息,我們在來深入一下,
void weak_clear_no_lock(weak_table_t *weak_table, id referent_id)
{
objc_object *referent = (objc_object *)referent_id;
weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
if (entry == nil) {
/// XXX shouldn't happen, but does with mismatched CF/objc
//printf("XXX no entry for clear deallocating %p\n", referent);
return;
}
// zero out references
weak_referrer_t *referrers;
size_t count;
if (entry->out_of_line) {
referrers = entry->referrers;
count = TABLE_SIZE(entry);
}
else {
referrers = entry->inline_referrers;
count = WEAK_INLINE_COUNT;
}
for (size_t i = 0; i < count; ++i) {
objc_object **referrer = referrers[I];
if (referrer) {
if (*referrer == referent) {
*referrer = nil;
}
else if (*referrer) {
_objc_inform("__weak variable at %p holds %p instead of %p. "
"This is probably incorrect use of "
"objc_storeWeak() and objc_loadWeak(). "
"Break on objc_weak_error to debug.\n",
referrer, (void*)*referrer, (void*)referent);
objc_weak_error();
}
}
}
weak_entry_remove(weak_table, entry);
}
這個函數根據 out_of_line 的值,取得對應的記錄表,然后根據引用計數對象,將相應的 weak 對象置 nil。最后清除相應的記錄表。
通過上面的描述,我們基本能了解一個weak引用從生到死的過程。從這個流程可以看出,一個weak引用的處理涉及各種查表、添加與刪除操作,還是有一定消耗的。所以如果大量使用__weak變量的話,會對性能造成一定的影響。那么,我們應該在什么時候去使用weak呢?《Objective-C高級編程》給我們的建議是只在避免循環引用的時候使用__weak修飾符。