如何看待星座?用大數據和機器學習揭開十二星座的真實面目!

原標題:細思恐極的星座分析(上)——用大數據和機器學習揭開十二星座的真實面目

作者wwqqer,2017年7月第一版,首發(fā)于經管之家。未經允許,不得轉載!

“為什么我的論文總發(fā)表不了,是不是我天生就不是做研究的料?”很多同學在寫論文中遇到挫折,經常會發(fā)出這樣的疑問。那么今天我就用星座,真實的數據和“高大上”的機器學習來幫大家分析一下原因。首先聲明,我不是宿命論的支持者。本文也不是教大家如何成功,但利用本文的研究成果,可以幫助大家少走些彎路。不管大家之前對星座分析持何種態(tài)度,我希望大家耐心讀完本文之后,能對星座與天賦有全新的認識。

溫馨提示:本文完全從科學的角度探討人類的天賦,期間會借用一些星相學中的名詞,但請不要將本文與占星術或星盤混為一談。本文很長,分上下兩部分,上半部分主要討論太陽星座,下半部分將涉及月亮星座等。而且,有同學可能將天文學中的星座(Constellation)與星相學中的星座(Zodiac Sign)混淆,關于這個的科普請見本文下半部分的附錄二。另外,本文討論天賦與星座的關系,所使用的是客觀的數據,不以個人的意志而轉移,不會產生所謂“巴納姆”效應,請個人不要對號入座,因為普通人努力都不夠,還沒資格談天賦呢。最后,本文中的“天賦”其實用“本性”更合適些,因為它還包括了性格等因素。

本文的研究方法很簡單:聚天下之天才而觀察之。把各行各業(yè)中的天才們收集起來,看看他們哪個星座人數多,哪個星座人數少。方法簡單,人人都會。但操作細節(jié)很重要,這樣做出來的結果才會有意思(本文研究方法的具體細節(jié)見文末【附錄一】)。我們先來看一下有哪些天才被我當成了“小白鼠”。“表一”總結了本文所使用的數據。

表一:數據總結表

本文共選擇了27個行業(yè),總共5700多個樣本,其中華人約占350個,女性約占600個,南半球約占300個。如果沒有特別注明,各行業(yè)數據的歷史一般是從該獎項(如果有的話)設立開始,直到2017年為止。有些行業(yè)有嚴格的篩選過程,比如每年評選的諾貝爾獎,各種體育競技項目的國際比賽等,我們就可以利用它們來確定樣本。然而,另一些行業(yè)沒有固定的篩選過程,尤其是藝術類。所以,我們只能靠“時間”來篩選。具體來說,就是用搜索引擎搜索“歷史上著名XXX”(XXX為職業(yè)名,比如,建筑師,作家等),來挑選舉世公認的行業(yè)領軍人物。本文使用的數據的總時間跨度大約是最近300年左右。

既然介紹了數據,那么我們就來看一下使用所有的數據統(tǒng)計出的星座分布(圖一)(注:由于每個星座內的天數稍有不同,我用得到的每個星座的人數除以該星座的天數,從而算出星座分布的日均數,以排除天數不同帶來的影響。本文之后所有的計算和結論都建立在諸如此類的日均數上)。圖一的四種顏色分別代表土(黃色),水(藍色),火(紅色),風(灰色)四大星象。從圖一中,我們看到射手人數最少,而與之相鄰的摩羯座人數最多,兩者的平均數接近全部星座的平均數15.5。另外,兩頭的白羊座和雙魚座人數也不少。除此之外,就很難看出有其它什么規(guī)律了。如果本文的星座分析是這樣的話,就太”圖樣圖森破“了。所以,讓我們接著往下看。

圖一:星座人數總分布圖

關于天賦的星座分析

我把判斷顯著差別的計分法則(見文末【附錄一】)運用到“表一”的27個行業(yè)上,我們就得到了“表二”(簡單理解,正2分表示“人數非常多”,正1分表示“人數比較多”,負1分表示“人數比較少”,負2分表示“人數非常少”,0分則表示“人數不多不少,處于平均水平”)。請記住“表二”,因為它是本文上半部分最重要的成果,它記錄了星座與人類天賦的關系!

表二:十二星座行業(yè)得分表

我在表的上方標注了每個行業(yè)可能需要的"(主要)能力"(以我這個外行的角度),有些能力是幾個行業(yè)共享的。另外,“表二”是僅僅基于北半球的樣本所得結果(至于為什么分南北半球,我將在本文下半部分作詳細解釋)。行文至此,星座與天賦之間的關系就在“表二”建立起來了。是不是表中出現2分的情況比你想的要多得多?請注意,由于我是分行業(yè)統(tǒng)計,我并不需要了解全體人口的星座分布(比如,白羊座的總人數多于獅子座,等等),而是要更關心每個行業(yè)內的星座分布,比如:“表中某星座在某行業(yè)得了2分,說明這個星座在這個行業(yè)的領軍人物的人數要超過其他星座,會不會是因為這個星座從事這行業(yè)的人本來就多呢?”要回答這個問題,就得調查這個行業(yè)的所有從業(yè)人員的星座了,可惜相關數據很難獲得。另外,如果從事這行業(yè)的某星座人數很多,這本身就是一個很有意思的現象。與本文的研究并不矛盾。

言歸正傳,鑒于此表的信息量很大,我們可以先計算各個星座的大類(科研,藝術,體育)平均得分,這樣看起來可以更直觀一些。如下表所示,在科研方面,處女座和獅子座這兩個相鄰星座分別占據著科研的頭名和末名。在藝術方面,白羊座是當仁不讓的第一,而雙子座,處女座和摩羯座則并列最后。在體育方面,摩羯座表現突出,而天蝎座則表現不佳。總的來說,這些星座如果在某一方面特別強,那么在其它方面就會差一點,甚至很差。反倒是巨蟹座和天秤座雖然沒有最強的某一方面,但是在全部三個方面都優(yōu)于平均水平,屬于均衡發(fā)展型。

表三:十二星座大類行業(yè)平均得分表

下面我就基于“表二”對十二個星座依次進行分析。(請注意,下文括號內的代表人物是一些個例,是按影響力大小選擇的,并不一定符合這里統(tǒng)計意義上的性格特征描述)

一,白羊座(代表人物:歐拉,格里高利·派克,黑澤明,卡拉揚,梵高)

白羊座在藝術類得分之高,無人能出其右,尤其是需要運用感情和強烈的肢體語言來表達的表演,指揮和鋼琴演奏。再加上導演和繪畫,網絡上對白羊座的評價是:沖動,積極,思維活躍。我覺得還是有些靠譜的。同時,也說明他們擅長表達和詮釋事物的內涵。這樣才能做出出色的數學研究,去詮釋世間美妙的真諦!白羊座在計算機和圍棋上得分很低,說明他們不喜歡按部就班地進行計算和算計。

二,金牛座(代表人物:高斯,薩繆爾森,哈耶克,貝聿銘,范斯哲,奧黛麗·赫本)

金牛座在藝術類中的導演和時裝設計得分比較高但繪畫得分一般,說明他們畫面感很強,而且善于運用到實際中。金牛座在斯諾克和宇航員這兩項中得分較高,說明網絡上流傳的“金牛座可靠,有耐心”并非空穴來風。優(yōu)秀的斯諾克選手需要時刻保持紳士風度,斯諾克本身就是一項需要克制情緒的運動,如果過度興奮或者過度悲觀,都難以打好。至于宇航員更是如此。眾所周知,宇航員的選拔條件非常嚴苛,必須具有非常堅強的意志品質和忍耐力來面對各種惡劣的生存環(huán)境。金牛座在網球項目上得到了為數不多的負2分,這更說明他們“穩(wěn)重,缺少爆發(fā)力” 。至于金牛座的其它性格,比如,吝嗇,古板,我們無法從行業(yè)表現中得到答案。

三,雙子座(代表人物:納什,赫伯特·西蒙,特朗普,吳清源)

雙子座不擅長做“大生意”,而喜歡“耍小聰明”,擺弄“小玩意兒”,比如,下個棋,照個相。他們也不擅長需要熱情沖動的行業(yè),比如,表演,繪畫,時裝設計等,而且在斯諾克上表現也不好。這倒挺符合網絡對雙子座的評價:“機智,善變,不安分”。即使是做研究也是關注“小”的方面,比如,在諾貝爾經濟學獎獲得者中,有10位是雙子座的,竟無一人研究宏觀經濟學。倒是有4人研究博弈論(John Harsanyi,Lloyd S. Shapley,Robert Aumann,John Nash),4人研究微觀經濟學(Maurice Allais ,Herbert Simon,George Akerlof,William Vickrey)。

四,巨蟹座(代表人物:圖靈,梅麗爾·斯特里普,喬治·阿瑪尼,伊隆·馬斯克)

巨蟹座在表演,尤其是時裝設計中得了高分。如果把表演細分成男演員和女演員,巨蟹座在女演員分布中的得分比在細分前還要高(僅次于天蝎座,“蛇蝎美人”原來是有數據支持的!呵呵。)。再結合他們在時裝設計中的搶眼表現,果然如同網絡所說,這是一個“母性泛濫”的星座!照這個情況,巨蟹座不應該在鋼琴演奏中獲得低分。獲得低分的原因可能是因為它們對于枯燥的反復訓練缺乏堅持下去的毅力。這一點得到了宇航員的佐證。在重壓之下,巨蟹座早早地就躲進了自己的蟹殼中,呵呵。盡管如此,巨蟹座因為他們的小心謹慎使得他們在玩德州撲克時立于不敗之地。難道這是傳說中的凱利公式(Kelly Formula)的真實寫照?(注:在重復賭局中,凱利公式根據贏輸的概率及獲利多少來決定投資(賭注)的大小使得(長期的)總預期收益最大,使用此公式就永遠不會有破產無注可投的情況出現。)而且,巨蟹座的小心謹慎幫助他們在科研中取得成就,巨蟹座在科研中的得分超過十二星座的平均水平。

五,獅子座(代表人物:香奈爾,聶衛(wèi)平,雷-達里奧,索羅斯,李嘉誠)

自信大膽且具有大局觀的獅子座在商界和投資界傲視群雄,果然名不虛傳!這點也體現在了下棋,建筑,文學和時裝設計上。另一方面,過分自信的獅子座就會變得武斷魯莽,做事不仔細考慮,觀察力不強,這一點在高爾夫球和哲學上表現尤具代表性。與之相關的,他們在繪畫,作曲,物理,醫(yī)學表現也不佳。

六,處女座(代表人物:黎曼,安藤忠雄,歌德,小澤征爾,巴菲特)

處女座是個很有意思的星座。他們在科研類中的得分是十二個星座里最高的,尤其擅長關注結構里的細節(jié)。而他們在藝術類的得分是最低的之一。另外,如同金牛座,處女座的忍耐力也是杠杠的,他們在斯諾克和宇航員這兩項中取得高分。由此可見,處女座既仔細又有忍耐力,但不按部就班,還有很強的觀察力,這是他們在搞科研時的制勝法寶。但另一方面,不感情用事的處女座缺少藝術創(chuàng)作中的那“神來一筆”。處女座在網上的評價,“完美主義,吹毛求疵,頭腦清晰”。這一點在這里應該是說得通的。

七,天秤座(代表人物:霍洛維茨,李云迪,李安,艾略特,張愛玲,楊振寧)

天秤座的平衡感強,擅長分析處理結構問題,比如,化學,建筑,尤其是文學。天秤座出人意料地在網球項目上得了高分,這可能也得益于他們的平衡感吧。在十二個星座中,天秤座在27個行業(yè)里得到的負分最少,所以,他們沒有明顯的短板。這里,我們無法驗證天秤座是否如網絡所說“平易近人,輕浮,優(yōu)柔寡斷”。

八,天蝎座(代表人物:費雯麗,居里夫人,比爾蓋茨,畢加索,莫奈,屠格涅夫)

天蝎座在哲學和繪畫上都得到了超高分,而且在表演方面也很強。這表明他們敏感,思想復雜,具有很強的洞察力。僅憑他們在哲學上的優(yōu)異表現,天蝎座就無愧于十二星座中“最理性星座”的稱號!由此可以推斷,他們已把感性的繪畫和表演提升到了理性的高度。然而,過分強調“形而上”的天蝎座在實際科研(比如,計算機,化學)及其它行業(yè)(比如,鋼琴演奏,網球,斯諾克)中顯出了缺乏耐心,不注意細節(jié)的弱點。天蝎座不擅長變魔術,應該也是理性思考的后遺癥吧。這里無法驗證網絡上評價天蝎座的“疑心,善妒,報復心強”。

九,射手座(代表人物:勞倫斯薩莫斯,馬克吐溫,斯皮爾伯格,李政道)

與天蝎座正好相反,射手座在哲學和數學方面表現不佳,這可能與他們熱情開放的性格,以及缺乏縝密思維的特質有關。而且,缺少耐心和忍耐力的他們在斯諾克,宇航員,及商業(yè)等行業(yè)中難有建樹。所以,網上評價射手座“浮躁,做事易半途而廢”,好像有點道理。不過,值得一提的是,射手座在經濟研究方面的表現突出。一共有六位諾貝爾經濟學獎獲得者,以及五位克拉克獎獲得者。與雙子座相比,研究宏觀經濟學的射手座經濟學家的數量明顯增加,比如,Finn Kydland,Gunnar Myrdal,Eric Maskin,Trygve Haavelmo,Martin Feldstein,Lawrence Summers等。有意思的是,雙子座與射手座在經濟研究上都表現很好(僅管擅長的方面不同),但他們在商業(yè)領域表現都很糟糕。

十,摩羯座(代表人物:牛頓,史蒂文·索德伯格,舒馬赫,老虎伍茲)

摩羯座是十二星座里唯一一個在德州撲克和(尤其是)F1賽車都得高分的星座,難怪他們被網上評為“最有原則”的星座。如同小心謹慎的巨蟹座一樣,腳踏實地的摩羯座在計算機研究領域優(yōu)于其它星座。然而,專注有余的摩羯座想象力和創(chuàng)造力有點不足,這點可以從他們在建筑,時裝設計,和魔術上的不佳表現看出。與此相關,分析處理結構問題也需要想象力和發(fā)散性思維(比如,化學,建筑,文學,尤其是物理),但過于嚴謹的摩羯座并不擅長此類問題,即使有牛頓這樣的巨擎撐腰也無濟于事。

十一,水瓶座(代表人物:保羅紐曼,莫扎特,舒伯特,狄更斯,愛迪生)

都說水瓶座充滿智慧,可是“表二” 并沒有反應出這點。相反,水瓶座在科研類和文藝類的得分都處于十二個星座的下游。在體育類中,也只有高爾夫球是個亮點。崇尚自由的水瓶座確實不適合從事德州撲克,斯諾克和攝影等需要克制情緒的行業(yè)。順便提一下,水瓶座在表演行業(yè)中處于中游,但如果把表演行業(yè)細分成男演員和女演員,水瓶座可以在男演員中排第二位(僅次于白羊座),接近一個標準差。所以,水瓶座的男同學們只要負責耍帥,打打高爾夫球就行啦。

十二,雙魚座(代表人物:喬布斯,默多克,肖邦,愛因斯坦,雨果,加加林)

在我看來,雙魚座大概是十二星座里最神奇的星座了。首先,與天蝎座相似,雙魚座依靠縝密的思維來思考“形而上”的哲學問題,但面對需要具體計算的計算機研究和德州撲克時都表現不佳。但與天蝎座不同的是,雙魚座有較強的忍耐力和專注力,這幫助他們在商界大展身手。而且,雙魚座是唯一一個既擅長高爾夫又擅長網球的星座,真是“靜如處子,動如脫兔”。更重要的是,雙魚座還是個會耍酷炫魔術的高手,說明他們在理性之中還帶有感性,可能還具有一定的膽量。總之,許多事物的兩面性都體現在這個星座中,真是件奇妙的事情。這些表現與網絡上對雙魚座的評價“感性,濫情,意志力薄弱”很不相同。我覺得《名偵探柯南》中那個神出鬼沒,風流倜儻的怪盜基德更像是雙魚座的(僅管他被設定為與漫畫作者本人一樣的雙子座),呵呵。

行文至此,我把每個星座所擅長和不擅長的能力都分析了一遍,而且還借此驗證了網上流行的星座性格分析是否靠譜。盡管性格與能力有密切聯系,但是它們終究是兩個概念。所以,正如大家在上文中看到的,在大多數情況下,我只能驗證其中的一部分。驗證的結果總結如下(見表四):有些星座的分析,經過驗證是比較靠譜的,比如表最左側的雙子座,獅子座,處女座,巨蟹座和摩羯座。但還有一些,我只能檢驗其中的一部分。有時甚至一點也不能,比如,表最右側的天秤座和雙魚座。

表四:十二星座驗證表

在這里我想插一個花絮:大家可能知道菲爾茲獎首位(也是迄今唯一一位)女性獲得者,伊朗著名數學家瑪麗安·米爾扎哈尼(Maryam Mirzakhani)最近(2017年7月)英年早逝,年僅40歲。當我在閱讀她的生平時(見【1】),發(fā)現了一些有意思的事情。

瑪麗安的家里沒人是科學家,她從沒想過要學數學,但一直被鼓勵自立和追求興趣。跟所有女孩一樣喜歡看小說。想當小文青的她非但不是學霸,還對數學很頭痛,老師也說她沒天分。直到高二,她才在一個偶然的情況下發(fā)現了自己的數學天賦。米爾扎哈尼說自己很慢,是個“慢”數學家。到高二才發(fā)掘天分,解題也是耐心組合出辦法。當她從事數學研究時,她的心思都在研究上,說自己是“慢人”,不靠靈光一閃解決難題,“有些問題已經研究了十幾年,但經過數月甚至數年,你才能發(fā)現問題不同的一面。”有斯坦福大學同事說,她最獨特的是研究方法,能創(chuàng)新地將不同事物連接在一起,對難題特別興奮,毫無懼色。這種“慢”和“穩(wěn)”的性格不光在工作上,生活上也一樣。瑪麗安的丈夫也是科學家。兩人一起去跑步。老公高大健壯,一開始跑前面,她體格嬌小,一直沒有放慢腳步,半個小時以后,老公精疲力竭,她還保持著最初的速度。米爾扎哈尼給世界留下過一句話:“只要有耐心,孩子總會發(fā)現數學之美。我不認為每個人都應該成為數學家,但我相信許多人不曾給數學一個真正的機會。”

當我讀完她的生平,我?guī)缀跄?0%地肯定她應該是金牛座。于是去查了她的生日(5月3日),發(fā)現果然就是!當然,這畢竟只是一個個例。在上文的星座分析中,我不做個例分析,是為了強調結果的統(tǒng)計屬性,避免給大家造成“以偏概全”的錯覺。不過,瑪麗安·米爾扎哈尼的例子是最近發(fā)生的,且非常具有傳奇性,所以就談一下,在下文中還會被提及。

言歸正傳,這里需要指出的是,我對這27個行業(yè)中的大部分都不是很熟悉,所以,只能從外行的角度給這些行業(yè)加上所需的能力。這樣能夠幫助完成分析,并盡量避免無法解釋某些星座表現的情況發(fā)生。每個人對這些行業(yè)的理解不同,就有可能導致分析的結論不同。非常歡迎大家提出寶貴意見。

上述的十二星座分析只停留在文字描述,下面我要對“表二”進行量化分析。對數學不感興趣的同學可以略過,直接跳到小結部分。

星座量化分析

上文“表二”中的每一列是一個行業(yè),也可以看成是一列數組,所以我們可以計算它們之間的關聯系數。按道理,這應該是一個27乘27的相關系數矩陣,但篇幅有限,我只報告相關性最高的那些行業(yè)。而且,我比較關心大類與大類之間的行業(yè)相關性,而不是大類內部行業(yè)的相關性(比如,數學和物理屬于科研大類,繪畫和作曲屬于藝術大類,等等)。注意,這里的相關性不一定是我們平常認知里行業(yè)間的相關性,而可能是由于十二個星座在行業(yè)中的表現造成的相關性。所以,我們會看到一些出乎意料的結果。

“表五”列出了相關系數大于0.5的行業(yè)(不等于零的顯著性都超過至少95%)。其中有些比較容易理解,比如,商業(yè)和投資。有一些乍看不明白,但稍微想一下就理解的,比如,德州撲克和計算機,哲學與繪畫,宇航員和斯諾克。但有好些就不那么容易理解了,比如,相關系數高達0.83的指揮與數學,以及緊接著的作曲與醫(yī)學(相關系數0.82)。就拿指揮與數學來說,其相關系數高的原因是白羊座在這兩項都得了高分,而雙子座都得了低分,其它星座沒有一高一低相沖突的情況出現。

表五:行業(yè)相關性列表

具體來說,雙子座得低分可能是因為他們機智善變的性格不擅長思考“形而上”的數學或哲學問題(雙子座繪畫也不行,而繪畫與哲學相關性高達0.8)。同樣,這種性格也不適合從事需要投入感情的行業(yè),比如,指揮。另外,他們在斯諾克的低分和圍棋的高分,更證實了他們機智而不穩(wěn)重的一面。再看白羊座,情況稍稍復雜一些。沖動的白羊座不僅在指揮,還在表演和鋼琴演奏中取得高分,這是可以理解的。但他們在數學中的優(yōu)異表現就不能單單用“沖動”來解釋了,我只能認為他們還擅長發(fā)掘事物的內涵,尤其從抽象的角度。這點可以由他們在繪畫中的表現來佐證。

縱向看完“表二”后,我們再橫向看一下。表中的每一行也是一列數組,按道理,我們也可以計算行與行的相關性。不過,我在這里使用一個新方法:層次聚類(Hierarchical Clustering)。這個方法的原理很簡單:每列數組在初始時刻各自為一個類別,然后由下往上(agglomerative),每一次迭代選取距離最近的兩個類別(這里使用的是Euclidean距離),把他們合并,直到最后只剩下一個類別為止,這樣“一棵樹”就構造完成了。這種方法的好處是不用在一開始就確定聚類數(number of clusters),可以等到建立樹形圖后再確定。這也是機器學習中的一種分類方法(非監(jiān)督學習)。“表二”的聚類樹形圖和8個聚類(紅框)如下。

圖二:十二星座層次聚類樹形圖

如“圖二”所示,水瓶座與雙魚座,還有金牛座與處女座距離很近,所以它們最先分別組成一個聚類。倒是巨蟹座與射手座的結合有點出乎意料。再向上一層,天秤座與獅子座相近,所以他們歸為一個聚類。在樹形圖中,越往上,差異越大(距離越遠),例如,雙子座,摩羯座,白羊座,天蝎座。另外,除了同為土象的金牛座與處女座距離較近以外,土水火風四大星象的說法并沒有從“圖二”得到支持。順便提一下,本方法用到的距離與相關系數實際上是一回事:(已標準化的)數組間的相關系數等于數組間的距離(Euclidean距離)的倒數,即兩個數組相關系數越大,它們之間的距離就越小。這個結論符合一般認知,也可以從它們的數學定義中證得。由于篇幅有限,此處不再贅述。

最后,我對“表二”進行主成分分析(PCA,也屬于機器學習中非監(jiān)督學習的一種)。如“圖三”所示,第一個因子(PC1),也是最重要的因子,只能解釋“表二”中20%的方差。要想累計貢獻率達到90%,必須用到前8個因子。這種情況是符合一般認知的,因為我們知道十二個星座之間有明顯差異,很難用一兩個因子就解釋全部信息。在進行主成分分析時,原有的分類被打破,所以很難解釋所得到的結果。這也是主成分分析的一個弱點。

圖三和表六:主成分分析方差累計貢獻率及相關星座

因此,我計算了前四個主成分因子與12個星座的相關性,并把其中系數絕對值最大的星座列在了“表六”。這樣我們可以大致了解這些主成分因子所代表的含義。比如說,第一個因子與雙子座的相關性高達93%,與白羊座為-70%。那么,我們可以大致認為雙子座與白羊座的反面是十二星座里最主要的星座,盡管它們只能解釋所有信息中的五分之一。以此類推,由于越往后,所剩信息越少,所以因子與星座的相關性會變弱。但我們還是能夠看出個大概。值得注意的是,“表六”列出的星座與前文中的層次聚類樹形圖最上方的星座大體相符,例如,雙子座,摩羯座,獅子座,白羊座等,說明這些星座的確比較特別一些(類似于矩陣中的基)。

小結與應用

我在本文(上半部分)考查了星座與天賦之間的關系。通過觀察十二星座在總共27個行業(yè)中的表現,我們把每個星座和它們各自的強項和弱項聯系了起來。其次,借助星座們在行業(yè)中的表現,我對網絡上的星座評價進行驗證。有些星座經過驗證是靠譜的(比如,雙子座,獅子座),但有些我們只能驗證一部分,甚至于還有一些我們無法驗證(比如,天秤座,雙魚座)。最后,通過量化分析,我們了解了十二星座大致可以分成8個聚類(cluster),其中有些星座比較相似,比如,水瓶座與雙魚座,還有金牛座與處女座。但有些星座與其它星座比起來更不同一些,比如,雙子座,摩羯座,獅子座,白羊座等。另外,我們需要至少8個主成分因子,才能使累計貢獻率達到90%。

看到這里,有同學可能會問:“我只是個普通人,你分析了一大堆關于天才的數據,那與我何干?” 這個可以從三方面來回答:挖掘個人潛能,改進個人短處,以及人際交往

雖然本文探討的不是如何挖掘普通人的潛能,但本文的研究結果可以提供一個參考。從體育類及藝術類行業(yè)來說,一個初入某一新行業(yè)的成年人,要想通過挖掘潛能成為這一行業(yè)的領軍人物不太現實,但經過一定課時的基本訓練,把潛能發(fā)展成興趣愛好還是可行的。當然,我不是說其它星座的同學不能做,而是說這些星座的同學的性格比較適合玩這些項目。舉個例子,機智靈巧的雙子座同學可以試著學學圍棋,玩玩攝影。小心謹慎的巨蟹座同學可以玩玩德州撲克。沖動熱情的白羊座同學可以開發(fā)的項目就更多了,從表演,繪畫,到鋼琴,甚至導演。在如今“自媒體”橫行的時代,白羊座有了一個很好的施展的平臺。說不定哪天,又會出來一個類似papi醬(水瓶座)的網紅。

另一方面,本文可以幫助大家更有的放矢地改進自己的短處。比如,小心謹慎的巨蟹可以試著加強韌勁和自信,在工作和學習中有意識地大聲說出自己的想法,遇到困難時不輕易打退堂鼓。當然,我不是說巨蟹座的同學一定就缺乏自信,而是說這種情況較其它星座更有可能發(fā)生。而且,我們也不一定要改進得與金牛和獅子不相上下。如果能做到他們的一半,甚至只有三四成,那和原來的巨蟹比起來,已經是不小的進步了。其它星座也可仿效此方法對自己的短處進行改進。無論是挖掘長處,還是改進短處,后天的自我完善和自我升華,無論對個人還是對國家,都會有是有益的。

本文的研究結果也可以應用于平常的人際交往中。舉個例子,如果你老板(公司里或學校里)是獅子座,那就經常性地給他(她)帶高帽子,讓自信的獅子更出風頭。這樣你即使出點小錯,粗心的獅子也不會在意的。相反,你老板如果是處女座,那你只能辛苦一下,必須比他(她)還仔細,否則既仔細又有忍耐力的處女會把你逼瘋的。又假如你老板是白羊座,那你做事最好不要拖沓,沖動的白羊總是希望立馬看到效果。如果你老板是雙子座,那他(她)倒不會怎么為難你,因為他(她)自己也飄忽不定,不過你要時刻準備著應付他(她)不知從哪兒冒出來的“鬼點子”。再假如你老板是金牛座,那就要避免與他(她)正面沖突或爭論(即使你是對的一方),否則他(她)會和你死扛到底。剩下的星座,我就不一一點評了,大家自己慢慢琢磨吧。

以上這些觀點也適用于戀愛中的男女朋友!而且,本文的量化分析結果也可以幫助大家“速配”。比如,金牛座和處女座,還有水瓶座和雙魚座這兩個容易湊到一起,可能他們之間的思維方式和性格比較相似一些吧。不過,如果我說得不準,大家不要怪我,要怪就怪機器學習吧,呵呵。

最后,在結束本文上半部分前,再次提醒一下大家,以上所有結論都建立在北半球的數據上,至于南半球的結論如何,以及為何要南北半球分開分析,這些都將在本文下半部分討論。當然,下半部分要討論的遠遠不止這些,內容非常勁爆!請看這里:http://www.lxweimin.com/p/b8181b22ffe1


附錄一:本文研究方法的具體細節(jié)

一,如何選擇行業(yè)?

在“表一”中,27個行業(yè)的選擇遵循以下三個原則:

1. 要能夠突顯單個星座的特質。比如,諾貝爾和平獎得主沒有被選為研究對象,因為他們大多是政治家,后天因素起了主要作用,不符合本文的初衷。又比如,許多體育項目沒有被選中,因為大多數項目是集體活動,即使產生了許多體育明星,也很難區(qū)分他們的成功是由于團隊的力量還是個人的天賦造就的。而且,興奮劑在體育界的濫用也是另一個重要原因。

2. 要有可靠的(經過篩選的)且樣本數不是太小的數據。比如,歷年諾貝爾獎得主就是很好的數據,僅管有些科目越來越強調團隊合作(比如,化學,醫(yī)學),從而掩蓋了單個星座的特質。

3. 選擇范圍盡量地廣。人類的天賦具有多面性,所以選擇的行業(yè)要盡可能覆蓋它們,比如想象力,邏輯推斷力,表達能力,等等。

當然,我也不敢肯定這27個行業(yè)就一定能代表人類的所有天賦。但由于數據的限制,要想選出符合上述三個原則的行業(yè)并不是很容易。歡迎大家多提寶貴意見。

二,為什么要選擇每個行業(yè)中的天才?

這是因為在他們身上所體現的某些特質較普通人明顯,僅管(在研究前)我們暫時不知道到底是哪些特質。而且,他們在行業(yè)中的表現是客觀存在的,不會受到他人主觀評價的影響。其次,如同上文提及的,天才們是經過了嚴格的篩選后得到的,數據可靠且容易獲得。

最后也是最重要的一點,如上所述,本文不是討論如何挖掘天賦,而是假設天賦已顯露出來后,研究它與星座的關系(請個人不要對號入座,因為普通人努力都不夠,還沒資格談天賦呢)。我不是宿命論的支持者,一個人的天賦與他(她)最后取得的成就沒有必然聯系,因為會受到許多后天因素的影響。我使用‘天才’們的數據恰恰可以控制這些后天因素,尤其是學術類和體育類行業(yè),使得我更有效地觀察星座與天才之間的關系。

打個比方,我們可以不失一般性地認為諾貝爾經濟學獎獲得者的經濟學基本理論知識都很扎實,并且背景相似(都具有博士學位,都在高等學校任教,等等)。而且,我們也無法推斷說今年的諾獎獲得者比往屆的都要勤奮刻苦。至于藝術類,后天因素的影響就更小了,有人天生對聲音敏感,而有人天生對色彩敏感,諸如此類。即使有老師指導,也只是起輔助作用。所以,如果在后天因素被控制的情況下,某個星座的人數相較其它星座還存在顯著差別,那么我們有理由懷疑造成這種差別的原因不是來自后天,而是先天!

三,如何判斷一個星座的人數比另一個星座的人數多(或少)?

這里我使用簡單的統(tǒng)計學方法。假設給定一個行業(yè)的星座分布(如圖一),我可以算出分布的平均值與標準差。如果某個星座在離開平均數1個標準差附近,那么情況就“有點意思” 了,計正(負)0.5分。如果明顯超過1個標準差,那么情況就 “很有意思” 了,計正(負)1分。如果超過2個標準差,那么情況就“非常有意思” 了,計正(負)2分。如果是在1個標準差以內,則視為 “無差別”,計0分。這樣做的好處是可以排除某些行業(yè)樣本數過大帶來的影響(注1:所有行業(yè)的星座分布都是人數分布,除了圍棋。每位圍棋選手按水平高低有一個實力評分,圍棋的星座分布建立在這些評分上)。


參考文獻

【1】小時候被指沒天分,長大卻成天才少女,她的生命很短但驚艷了世界(http://www.weidu8.net/wx/1017150055433484

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,488評論 6 531
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發(fā)現死者居然都...
    沈念sama閱讀 98,034評論 3 414
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,327評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,554評論 1 307
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,337評論 6 404
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 54,883評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 42,975評論 3 439
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,114評論 0 286
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發(fā)現了一具尸體,經...
    沈念sama閱讀 48,625評論 1 332
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,555評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現自己被綠了。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,737評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,244評論 5 355
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 43,973評論 3 345
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,362評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,615評論 1 280
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,343評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,699評論 2 370

推薦閱讀更多精彩內容