sussman-talk

People in Different Cultures

It's hard to communicate with Greek people, unless you have learned Greek language, which, however, is impossible.

Mathematicians have developed a culture, a whole terribly (see below) specified language to express (write down) their ideas. And if you want to impress in your mind what's the idea behind an expression, you have to work hard on learning their language. Whereas, this language is terribly designed, so that unnecessary obstacles lie along the path of you learning.

Newton's Law:

Traditionally, it's $- G M r^{-3} \vec{r} = \ddot{r}$. Whereas, it's not clear what physical quantities the notations represent. You have to say, $\vec{r}$ is the trajectory of a particle in gravitational field caused by a point-mass $M$, thus $\vec{r} (t)$. It would be somehow automatically declared if it is re-written as $$-\frac{G M \vec{r} (t)}{r^3 (t)} = \frac{\mathd^2 \vec{r}}{\mathd t^2} (t)$$.

Leibniz's Rule:

Let $e (x, y) = f (g (x, y), h (x, y))$. We want $\partial e / \partial x (x,y)$. Denote $u = g (x, y)$ and $v = h (x, y)$. Then we write. $$\frac{\partial f (g (x, y), h (x, y))}{\partial x} = \frac{\partial f (u, v)}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f (u, v)}{\partial v} \frac{\partial v}{\partial x}$$. Then shortly and terribly, $$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x}$$.

Note that $f$ means different things on the two sides!

The correct way of expressing is $$\frac{\partial f (g (x, y), h (x, y))}{\partial x} = \partial_1 f (u, v) \big|{u = g (x, y), v = h (x, y)} \partial_1 g (x, y) + \partial_2 f (u, v) \big|{u = g (x, y), v = h (x, y)} \partial_1 h (x, y)}$$.

Lagrangian Equation:

Traditionally, Lagrangian equation is expressed as $$\fracbmtq3ia{d t} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0$$, which seems that $L: R \times R \times R \mapto R$, where one of the $R$ is for $t$. Thus, this expression has type violation! Indeed, the general expression of Lagrangian is $L(x, v) = (1/2) v^2 + V(x)$, for some $V$, which is $L: R^2 \mapto R$.

Gamma: path-space --> domain of Lagrangian
       function on R --> (function on R)^2
(def ((Gamma path) t)
     (up (path t) ((D path) t)))

lagrangian-eq: path-space --> domain of Lagrangian --> R
               function on R --> R
(def ((lagrangian-eq lagrangian) path)
     (minus (D (compose ((partial 2) lagrangian)
                        (Gamma path)))
            (compose ((partial 1) lagrangian)
                     (Gamma path))))

where D is the (Mathematica-l) derivative operation, such as

D (x^n) = n x^(n-1)

Thus we see, lagrangian-eq is a functional. This is manifest in (def ((lagrangian-eq lagrangian) path) ...). For instance, harmonic oscillator:

lagrangian (x, v) = (1/2) v^2 - (1/2) x^2

Things become declared and clarified in these expressions via programme.

Expressing GR via Programme.

  • As expressing via programmes, the point is not making GR simple, but making it clear. It is manifest how things is manipulated, in each step.

  • And demanding that the code can run on computer forces the expression be correct.

The Reason Why Programming that Makes It Better

  • Originally, for convenience of manipulation by hand, formulae are written abbreviatedly. This abbreviation makes algebric calculation fast, freeing our time from doing dull algebra and then focus more attention unto the meaning of the expressions, and getting rid of any misleading on them. However, this abbreviation carries two sides. It blocks us reading off the meaning from the abbreviated, thus quite non-straight-forward, expressions.

  • Then, programming saves us, as Leibniz originally dreamed. Verily, it sweeps the dull algebric calculation out of our mind and leave the non-abbreviated expression understandable.

T.B.C.


PS: 以前知道“簡書”對 Markdown 的支持很糟糕。比如:
This is a regular paragraph.

<table>
<tr>
<td>Foo</td>
</tr>
</table>

This is another regular paragraph.
(這段是從這里直接復制過來的。)現在看來它完全不支持 LaTeX,縮進也有問題。“簡書”果然很簡陋。


categories: programming

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,030評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,310評論 3 415
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,951評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,796評論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,566評論 6 407
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,055評論 1 322
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,142評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,303評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,799評論 1 333
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,683評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,899評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,409評論 5 358
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,135評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,520評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,757評論 1 282
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,528評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,844評論 2 372

推薦閱讀更多精彩內容

  • 月光美麗 無法拒絕 鏡中之花 總要破碎 請你記得 美好生命 有自由 更有贊美 盡管伸手 仰面索求
    再看長安花閱讀 221評論 0 0
  • 今天給大家推薦一本充滿藝術性和趣味性的“手指畫”書籍——《Let's make some great finger...
    Art一丁點閱讀 878評論 3 12
  • 時光匆匆,似乎應該要珍惜時光。而寫作往往是很耗費時間的。 但其實,我做過的最有意義的事,是在多年以后,看著自己多年...
    駁悖閱讀 245評論 0 0