目標檢測之 IoU計算原理與方法

IoU 作為目標檢測算法性能 mAP 計算的一個非常重要的函數。

但縱觀 IoU 計算的介紹知識,都是直接給出代碼,給出計算方法,沒有人徹底地分析過其中的邏輯,故本人書寫該篇博客來介紹下其中的邏輯。

1. IoU的簡介及原理解析

IoU 的全稱為交并比(Intersection over Union),通過這個名稱我們大概可以猜到 IoU 的計算方法。IoU 計算的是 “預測的邊框” 和 “真實的邊框” 的交集和并集的比值。


在這里插入圖片描述

開始計算之前,我們首先進行分析下交集和并集到底應該怎么計算:我們首先需要計算交集,然后并集通過兩個邊框的面積的和減去交集部分即為并集,因此 IoU 的計算的難點在于交集的計算。

為了計算交集,你腦子里首先想到的方法應該是:考慮兩個邊框的相對位置,然后按照相對位置(左上,左下,右上,右下,包含,互不相交)分情況討論,來計算交集。

在這里插入圖片描述

上圖就是你的直覺,這樣想沒有錯。但計算一個交集,就要分多種情況討論,要是程序真的按照這邏輯編寫就太搞笑了。因此對這個問題進行進一步地研究顯得十分有必要。

讓我們重新思考一下兩個框交集的計算。兩個框交集的計算的實質是兩個集合交集的計算,因此我們可以將兩個框的交集的計算簡化為:

在這里插入圖片描述

通過簡化,我們可以清晰地看到,交集計算的關鍵是交集上下界點(圖中藍點)的計算。

我們假設集合 A 為 [x 1 x_{1}x1?,x 2 x_{2}x2?],集合 B 為 [y 1 y_{1}y1?,y 2 y_{2}y2?]。然后我們來求AB交集的上下界限。

交集計算的邏輯

  • 交集下界 z 1 z_{1}z1?:max ( x 1 , y 1 ) \text{max}(x_{1}, y_{1})max(x1?,y1?)
  • 交集上界 z 2 z_{2}z2?:min ( x 2 , y 2 ) \text{min}(x_{2}, y_{2})min(x2?,y2?)
  • 如果 z 2 ? z 1 z_{2}-z_{1}z2??z1? 小于0,則說明集合 A 和集合 B 沒有交集。

下面使用Python來實現兩個一維集合的 IoU 的計算:

def iou(set_a, set_b):
    '''
    一維 iou 的計算
    '''
    x1, x2 = set_a # (left, right)
    y1, y2 = set_b # (left, right)

    low = max(x1, y1)
    high = min(x2, y2)
    # intersection
    if high-low<0:
        inter = 0
    else:
        inter = high-low
    # union
    union = (x2 - x1) + (y2 - y1) - inter
    # iou
    iou = inter / union
    return iou

上面,我們計算了兩個一維集合的 iou,將上面的程序進行擴展,即可得到兩個框 IoU 計算的程序。

def iou(box1, box2):
    '''
    兩個框(二維)的 iou 計算

    注意:邊框以左上為原點

    box:[top, left, bottom, right]
    '''
    in_h = min(box1[2], box2[2]) - max(box1[0], box2[0])
    in_w = min(box1[3], box2[3]) - max(box1[1], box2[1])
    inter = 0 if in_h<0 or in_w<0 else in_h*in_w
    union = (box1[2] - box1[0]) * (box1[3] - box1[1]) + \
            (box2[2] - box2[0]) * (box2[3] - box2[1]) - inter
    iou = inter / union
    return iou

2. 基于TensorFlow的IoU實現

上節介紹了IoU,及其的計算,下面我們給出其在 TensorFlow 上的實現:

import tensorflow as tf

def IoU_calculator(x, y, w, h, l_x, l_y, l_w, l_h):
    """calaulate IoU
    Args:
      x: net predicted x
      y: net predicted y
      w: net predicted width
      h: net predicted height
      l_x: label x
      l_y: label y
      l_w: label width
      l_h: label height

    Returns:
      IoU
    """

    # convert to coner
    x_max = x + w/2
    y_max = y + h/2
    x_min = x - w/2
    y_min = y - h/2

    l_x_max = l_x + l_w/2
    l_y_max = l_y + l_h/2
    l_x_min = l_x - l_w/2
    l_y_min = l_y - l_h/2
    # calculate the inter
    inter_x_max = tf.minimum(x_max, l_x_max)
    inter_x_min = tf.maximum(x_min, l_x_min)

    inter_y_max = tf.minimum(y_max, l_y_max)
    inter_y_min = tf.maximum(y_min, l_y_min)

    inter_w = inter_x_max - inter_x_min
    inter_h = inter_y_max - inter_y_min

    inter = tf.cond(tf.logical_or(tf.less_equal(inter_w,0), tf.less_equal(inter_h,0)), 
                    lambda:tf.cast(0,tf.float32), 
                    lambda:tf.multiply(inter_w,inter_h))
    # calculate the union
    union = w*h + l_w*l_h - inter

    IoU = inter / union
    return IoU

?著作權歸作者所有,轉載或內容合作請聯系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,224評論 6 529
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 97,916評論 3 413
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事?!?“怎么了?”我有些...
    開封第一講書人閱讀 175,014評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,466評論 1 308
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,245評論 6 405
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,795評論 1 320
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 42,869評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,010評論 0 285
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,524評論 1 331
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,487評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,634評論 1 366
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,173評論 5 355
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 43,884評論 3 345
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,282評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,541評論 1 281
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,236評論 3 388
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,623評論 2 370

推薦閱讀更多精彩內容