曼哈頓最小生成樹

莫濤大神的論文
曼哈頓距離最小生成樹問題可以簡述如下:
給定二維平面上的N個點,在兩點之間連邊的代價為其曼哈頓距離,求使所有點連通的最小代價。

曼哈頓距離:給定二維平面上的N個點,在兩點之間連邊的代價。(即distance(P1,P2) = |x1-x2|+|y1-y2|)

樸素的算法可以用O(n^2)的Prim,或者處理出所有邊做Kruskal,但在這里總邊數有O( n^2)條,所以Kruskal的復雜度變成了O( n^2logn)。

而莫濤的算法時間復雜度是nlogn

莫隊算法步驟

算法步驟:
先將點按x坐標升序排序;
以任一一個點為端點,將平面分為八塊,每塊占45度角,那么在生成樹的最優解中,每個塊與這個點至多有一條邊,即一個點最多分別向八個方向最近的點連接一條邊,一條邊兩個點共用,同時,有四個方向是兩兩對稱的,所以只需要求出四塊(一般求第一象限和第四象限)所以最后邊數為4 * n。

B - 曼哈頓最小生成樹
題意;
求曼哈頓最小生成樹的第n-k條邊的權值
題解:
實現一:線段樹+莫隊算法

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN=10010;
const int MAXE=4*MAXN;
/*Kruskal  Algorithm*/
int parent[MAXN];
int father(int u)
{
    while(parent[u]!=u)
    {
        parent[u]=parent[parent[u]];
        u=parent[u];
    }
    return u;
}
bool connect(int u,int v)
{
    int fu=father(u);
    int fv=father(v);
    if(fv==fu) return false;
    parent[fu]=fv;
    return true;
}
struct Edge
{
    int u,v,w;
    Edge(){}
    Edge(int u,int v,int w):u(u),v(v),w(w){}
    bool operator<(const Edge &ee)const
    {
        return w<ee.w;
    }
};
Edge edge[MAXE];
int cnt;
void addEdge(int u,int v,int val)
{
    edge[cnt++]=Edge(u,v,val);
}
/*線段樹  */
struct Point
{
    int x,y,id;
    bool operator<(const Point &t) const
    {
        if(x==t.x) return y<t.y;
        return x<t.x;
    }
};
Point point[MAXN];
const int INF=0x3f3f3f3f;
struct Node
{
    int len,id;
};
Node tree[(MAXN+20)<<2];
void build(int l,int r,int rt)//init tree
{
    tree[rt].len=INF;
    tree[rt].id=-1;
    if(l==r) return;
    int mid=(l+r)>>1;
    build(l,mid,rt<<1);
    build(mid+1,r,rt<<1|1);
}
void update(int l,int r,int rt,Point &p,int pos)//push Point into tree
{
    if(l==r)
    {
        if(tree[rt].len>p.x+p.y)//be careful
        {
            tree[rt].len=p.x+p.y;
            tree[rt].id=p.id;
        }
        return;
    }
    int mid=(l+r)>>1;
    if(pos<=mid) update(l,mid,rt<<1,p,pos);
    else update(mid+1,r,rt<<1|1,p,pos);
    if(tree[rt<<1].len<tree[rt<<1|1].len)
    {
        tree[rt].len=tree[rt<<1].len;
        tree[rt].id=tree[rt<<1].id;
    }
    else
    {
        tree[rt].len=tree[rt<<1|1].len;
        tree[rt].id=tree[rt<<1|1].id;
    }
}
Node query(int l,int r,int L,int R,int rt)//從大于point[i].y-point[i].x的節點找最小值
{
    if(l==L&&r==R) return tree[rt];
    int mid=(l+r)>>1;
    if(R<=mid) return query(l,mid,L,R,rt<<1);
    else if(L>=mid+1) return query(mid+1,r,L,R,rt<<1|1);
    else
    {
        Node t1=query(l,mid,L,mid,rt<<1);
        Node t2=query(mid+1,r,mid+1,R,rt<<1|1);
        if(t1.len<t2.len) return t1;
        else return t2;
    }
}
int cpy[MAXN],arr[MAXN];
void solve(int n)
{
    sort(point+1,point+1+n);
    for(int i=1;i<=n;i++)
    {
        arr[i]=point[i].y-point[i].x;
        cpy[i]=arr[i];
    }
    sort(cpy+1,cpy+1+n);
    int cc=unique(cpy+1,cpy+1+n)-cpy;
    for(int i=1;i<=n;i++)
    {
        arr[i]=lower_bound(cpy+1,cpy+cc,arr[i])-cpy;//離散化
    }
    build(1,n,1);
    for(int i=n;i>0;i--)
    {
        int len=point[i].x+point[i].y;
        Node t=query(1,n,arr[i],n,1);
        if(t.id!=-1) addEdge(point[i].id,t.id,abs(len-t.len));
        update(1,n,1,point[i],arr[i]);
    }
}
/*Kruskal  Algorithm*/
int kruskal_mst(int k,int n)
{
    int u,v,sum=0;
    sort(edge,edge+cnt);
    for(int i=0;i<cnt;i++)
    {
        u=edge[i].u;v=edge[i].v;
        if(connect(u,v))
        {
            sum++;
            if(sum==n-k) return edge[i].w;
        }
    }
}
int main()
{
    int n,k;
    cnt=0;
    scanf("%d%d",&n,&k);
    for(int i=1;i<=n;i++)
    {
        scanf("%d%d",&point[i].x,&point[i].y);
        point[i].id=i;
    }
    for(int i=1;i<=n;i++)
    {
        parent[i]=i;
    }
    solve(n);//第一象限左上角
    for(int i=1;i<=n;i++)
        point[i].y=-point[i].y;
    solve(n);//第一象限右下角
    for(int i=1;i<=n;i++)
        point[i].y=-point[i].y,swap(point[i].x,point[i].y);
    solve(n);//第四象限左下角
    for(int i=1;i<=n;i++)
        point[i].y=-point[i].y;
    solve(n);//第四象限右上角
    printf("%d\n",kruskal_mst(k,n));
}

實現二:
樹狀數組+莫隊算法

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN=100010;
const int MAXE=MAXN*4;
const int INF=0x3f3f3f3f;
/*kruskal alrorithm*/
int father[MAXN],n;
int parent(int u)
{
    while(father[u]!=u)
    {
        father[u]=father[father[u]];
        u=father[u];
    }
    return u;
}
bool connect(int u,int v)
{
    int fu=parent(u);
    int fv=parent(v);
    if(fu==fv) return false;
    father[fu]=fv;
    return true;
}
struct Point
{
    int x,y,id;//id is for union_found
    bool operator <(const Point &p) const
    {
        if(x==p.x) return y<p.y;
        return x<p.x;
    }
};
Point point[MAXN];
/*數狀數組*/
struct Node
{
    int len,id;//len is to find min(x+y), id is for union_found
    void init(){len=INF;id=-1;}
};
Node c[MAXN<<2];
/*倒敘的樹狀數組,求的是后綴*/
void add(int x,Point &p)//push point into tree
{
    int len=p.x+p.y;
    while(x>0)
    {
        if(c[x].len>len)
        {
            c[x].id=p.id;
            c[x].len=len;
        }
        x-=x&(-x);
    }
}
/*在區間[x,y]求最小值*/
Node query(int x,int y)//從大于point[i].y-point[i].x的節點找最小值
{
    Node t;t.init();
    while(x<=y)
    {
        if(t.len>c[x].len)
        {
            t=c[x];
        }
        x+=x&(-x);
    }
    return t;
}
struct Edge
{
    int u,v,w;
    Edge(){}
    Edge(int u,int v,int w):u(u),v(v),w(w){}
    bool operator <(const Edge &ee) const
    {
        return w<ee.w;
    }
};
Edge edge[MAXE];
int cnt;
void addEdge(int u,int v,int val)
{
    edge[cnt++]=Edge(u,v,val);
}
int cpy[MAXN],arr[MAXN];
void solve(int n)
{
    sort(point+1,point+1+n);
    for(int i=1;i<=n;i++)
    {
        arr[i]=cpy[i]=point[i].y-point[i].x;
    }
    sort(cpy+1,cpy+1+n);
    int cc=unique(cpy+1,cpy+1+n)-cpy;
    for(int i=1;i<=n;i++)
    {
        arr[i]=lower_bound(cpy+1,cpy+cc,arr[i])-cpy;
    }
    for(int i=1;i<=cc;i++) c[i].init();
    for(int i=n;i>0;i--)
    {
        Node t=query(arr[i],cc);
        if(t.id!=-1) addEdge(point[i].id,t.id,abs(point[i].x+point[i].y-t.len));
        add(arr[i],point[i]);
    }
}
long long kruskal_mst(int k)
{
    int u,v;
    long long sum=0;
    sort(edge,edge+cnt);
    for(int i=0;i<cnt;i++)
    {
        u=edge[i].u;v=edge[i].v;
        if(connect(u,v))
        {
            sum++;
            if(sum==n-k) return edge[i].w;
        }
    }
    return sum;
}
int main()
{
    int k;
    scanf("%d%d",&n,&k);
    for(int i=1;i<=n;i++)
    {
        scanf("%d%d",&point[i].x,&point[i].y);
        point[i].id=i;
    }
    for(int i=1;i<=n;i++)
    {
        father[i]=i;
    }
    cnt=0;
    solve(n);
    for(int i=1;i<=n;i++)
        point[i].y=-point[i].y;
    solve(n);
    for(int i=1;i<=n;i++)
        point[i].y=-point[i].y,swap(point[i].x,point[i].y);
    solve(n);
    for(int i=1;i<=n;i++)
        point[i].y=-point[i].y;
    solve(n);
    printf("%lld\n",kruskal_mst(k));
}

C - Another Minimum Spanning Tree
題意:
求解曼哈頓最小生成樹
線段樹+莫隊算法

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN=100010;
const int MAXE=4*MAXN;
/*Kruskal  Algorithm*/
int parent[MAXN];
int father(int u)
{
    while(parent[u]!=u)
    {
        parent[u]=parent[parent[u]];
        u=parent[u];
    }
    return u;
}
bool connect(int u,int v)
{
    int fu=father(u);
    int fv=father(v);
    if(fv==fu) return false;
    parent[fu]=fv;
    return true;
}
struct Edge
{
    int u,v,w;
    Edge(){}
    Edge(int u,int v,int w):u(u),v(v),w(w){}
    bool operator<(const Edge &ee)const
    {
        return w<ee.w;
    }
};
Edge edge[MAXE];
int cnt;
void addEdge(int u,int v,int val)
{
    edge[cnt++]=Edge(u,v,val);
}
/*線段樹  */
struct Point
{
    int x,y,id;
    bool operator<(const Point &t) const
    {
        if(x==t.x) return y<t.y;
        return x<t.x;
    }
};
Point point[MAXN];
const int INF=0x3f3f3f3f;
struct Node
{
    int len,id;
};
Node tree[(MAXN+20)<<2];
void build(int l,int r,int rt)//init tree
{
    tree[rt].len=INF;
    tree[rt].id=-1;
    if(l==r) return;
    int mid=(l+r)>>1;
    build(l,mid,rt<<1);
    build(mid+1,r,rt<<1|1);
}
void update(int l,int r,int rt,Point &p,int pos)//push Point into tree
{
    if(l==r)
    {
        if(tree[rt].len>p.x+p.y)
        {
            tree[rt].len=p.x+p.y;
            tree[rt].id=p.id;
        }
        return;
    }
    int mid=(l+r)>>1;
    if(pos<=mid) update(l,mid,rt<<1,p,pos);
    else update(mid+1,r,rt<<1|1,p,pos);
    if(tree[rt<<1].len<tree[rt<<1|1].len)
    {
        tree[rt].len=tree[rt<<1].len;
        tree[rt].id=tree[rt<<1].id;
    }
    else
    {
        tree[rt].len=tree[rt<<1|1].len;
        tree[rt].id=tree[rt<<1|1].id;
    }
}
Node query(int l,int r,int L,int R,int rt)//從大于point[i].y-point[i].x的節點找最小值
{
    if(l==L&&r==R) return tree[rt];
    int mid=(l+r)>>1;
    if(R<=mid) return query(l,mid,L,R,rt<<1);
    else if(L>=mid+1) return query(mid+1,r,L,R,rt<<1|1);
    else
    {
        Node t1=query(l,mid,L,mid,rt<<1);
        Node t2=query(mid+1,r,mid+1,R,rt<<1|1);
        if(t1.len<t2.len) return t1;
        else return t2;
    }
}
int cpy[MAXN],arr[MAXN];
void solve(int n)
{
    sort(point+1,point+1+n);
    for(int i=1;i<=n;i++)
    {
        arr[i]=point[i].y-point[i].x;
        cpy[i]=arr[i];
    }
    sort(cpy+1,cpy+1+n);
    int cc=unique(cpy+1,cpy+1+n)-cpy;//離散化
    for(int i=1;i<=n;i++)
    {
        arr[i]=lower_bound(cpy+1,cpy+cc,arr[i])-cpy;
    }
    build(1,n,1);
    for(int i=n;i>0;i--)
    {
        int len=point[i].x+point[i].y;
        Node t=query(1,n,arr[i],n,1);
        if(t.id!=-1) addEdge(point[i].id,t.id,abs(len-t.len));
        update(1,n,1,point[i],arr[i]);
    }
}
/*Kruskal  Algorithm*/
int kruskal_mst(int n)
{
    int u,v;
    long long sum=0;
    sort(edge,edge+cnt);
    for(int i=0;i<cnt;i++)
    {
        u=edge[i].u;v=edge[i].v;
        if(connect(u,v))
        {
            sum+=(long long) edge[i].w;
        }
    }
    return sum;
}
int main()
{
    int n,cas=1;
    while(scanf("%d",&n)!=EOF,n){
    cnt=0;
    for(int i=1;i<=n;i++)
    {
        scanf("%d%d",&point[i].x,&point[i].y);
        point[i].id=i;
    }
    for(int i=1;i<=n;i++)
    {
        parent[i]=i;
    }
    solve(n);
    for(int i=1;i<=n;i++)
        point[i].y=-point[i].y;
    solve(n);
    for(int i=1;i<=n;i++)
        point[i].y=-point[i].y,swap(point[i].x,point[i].y);
    solve(n);
    for(int i=1;i<=n;i++)
        point[i].y=-point[i].y;
    solve(n);
    printf("Case %d: Total Weight = %lld\n",cas++,kruskal_mst(n));
    }
}

樹狀數組+莫隊算法

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN=100010;
const int MAXE=MAXN*4;
const int INF=0x3f3f3f3f;
/*kruskal alrorithm*/
int father[MAXN],n;
int parent(int u)
{
    while(father[u]!=u)
    {
        father[u]=father[father[u]];
        u=father[u];
    }
    return u;
}
bool connect(int u,int v)
{
    int fu=parent(u);
    int fv=parent(v);
    if(fu==fv) return false;
    father[fu]=fv;
    return true;
}
struct Point
{
    int x,y,id;//id is for union_found
    bool operator <(const Point &p) const
    {
        if(x==p.x) return y<p.y;
        return x<p.x;
    }
};
Point point[MAXN];
/*數狀數組*/
struct Node
{
    int len,id;//len is to find min(x+y), id is for union_found
    void init(){len=INF;id=-1;}
};
Node c[MAXN<<2];
/*倒敘的樹狀數組,求的是后綴*/
void add(int x,Point &p)//push point into tree
{
    int len=p.x+p.y;
    while(x>0)
    {
        if(c[x].len>len)
        {
            c[x].id=p.id;
            c[x].len=len;
        }
        x-=x&(-x);
    }
}
/*在區間[x,y]求最小值*/
Node query(int x,int y)//從大于point[i].y-point[i].x的節點找最小值
{
    Node t;t.init();
    while(x<=y)
    {
        if(t.len>c[x].len)
        {
            t=c[x];
        }
        x+=x&(-x);
    }
    return t;
}
struct Edge
{
    int u,v,w;
    Edge(){}
    Edge(int u,int v,int w):u(u),v(v),w(w){}
    bool operator <(const Edge &ee) const
    {
        return w<ee.w;
    }
};
Edge edge[MAXE];
int cnt;
void addEdge(int u,int v,int val)
{
    edge[cnt++]=Edge(u,v,val);
}
int cpy[MAXN],arr[MAXN];
void solve(int n)
{
    sort(point+1,point+1+n);
    for(int i=1;i<=n;i++)
    {
        arr[i]=cpy[i]=point[i].y-point[i].x;
    }
    sort(cpy+1,cpy+1+n);
    int cc=unique(cpy+1,cpy+1+n)-cpy;
    for(int i=1;i<=n;i++)
    {
        arr[i]=lower_bound(cpy+1,cpy+cc,arr[i])-cpy;
    }
    for(int i=1;i<=cc;i++) c[i].init();
    for(int i=n;i>0;i--)
    {
        Node t=query(arr[i],cc);
        if(t.id!=-1) addEdge(point[i].id,t.id,abs(point[i].x+point[i].y-t.len));
        add(arr[i],point[i]);
    }
}
long long kruskal_mst()
{
    int u,v;
    long long sum=0;
    sort(edge,edge+cnt);
    for(int i=0;i<cnt;i++)
    {
        u=edge[i].u;v=edge[i].v;
        if(connect(u,v))
        {
            sum+=(long long) edge[i].w;
        }
    }
    return sum;
}
int main()
{
    int cas=1;
    while(scanf("%d",&n)!=EOF,n)
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d",&point[i].x,&point[i].y);
            point[i].id=i;
        }
        for(int i=1;i<=n;i++)
        {
            father[i]=i;
        }
        cnt=0;
        solve(n);
        for(int i=1;i<=n;i++)
            point[i].y=-point[i].y;
        solve(n);
        for(int i=1;i<=n;i++)
            point[i].y=-point[i].y,swap(point[i].x,point[i].y);
        solve(n);
        for(int i=1;i<=n;i++)
            point[i].y=-point[i].y;
        solve(n);
        printf("Case %d: Total Weight = %lld\n",cas++,kruskal_mst());
    }
}
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,572評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,071評論 3 414
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,409評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,569評論 1 307
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,360評論 6 404
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,895評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 42,979評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,123評論 0 286
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,643評論 1 333
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,559評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,742評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,250評論 5 356
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 43,981評論 3 346
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,363評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,622評論 1 280
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,354評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,707評論 2 370

推薦閱讀更多精彩內容

  • 第一章 緒論 什么是數據結構? 數據結構的定義:數據結構是相互之間存在一種或多種特定關系的數據元素的集合。 第二章...
    SeanCheney閱讀 5,795評論 0 19
  • 數據結構與算法--最小生成樹之Prim算法 加權圖是一種為每條邊關聯一個權值或稱為成本的圖模型。所謂生成樹,是某圖...
    sunhaiyu閱讀 2,078評論 0 7
  • 今天看完了《SHOW YOUR WORK》。。。。。。。的中文版,英文版的實在太難啃,沒有啃下來,為了不錯過好書,...
    我是美美美新閱讀 5,710評論 1 3