問題重現
AIO進行寫文件使用了AsynchronousFileChannel類來實現,測試代碼如下:
public class AsynchronousFileChannelTest {
private static final String outputPath = "output.txt";
private static String data = "你好";
public static void main(String[] args) throws IOException {
Path path = Paths.get(outputPath);
if (!Files.exists(path)) {
Files.createFile(path);
}
AsynchronousFileChannel fileChannel =
AsynchronousFileChannel.open(path, StandardOpenOption.WRITE);
ByteBuffer buffer = ByteBuffer.allocate(1024);
long position = 0;
buffer.put(data.getBytes());
buffer.flip();
for (int i = 0; i < 10000000; i++) {
fileChannel.write(buffer, position, buffer, new CompletionHandler<Integer, ByteBuffer>() {
@Override
public void completed(Integer result, ByteBuffer attachment) {
System.out.println("bytes written: " + result);
}
@Override
public void failed(Throwable exc, ByteBuffer attachment) {
System.out.println("Write failed");
exc.printStackTrace();
}
});
position += data.getBytes().length;
}
}
}
執行結果如下:
java.lang.OutOfMemoryError: unable to create new native thread
at java.lang.Thread.start0(Native Method)
at java.lang.Thread.start(Thread.java:714)
at java.util.concurrent.ThreadPoolExecutor.addWorker(ThreadPoolExecutor.java:950)
at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1368)
at sun.nio.ch.Invoker.invokeIndirectly(Invoker.java:236)
at sun.nio.ch.SimpleAsynchronousFileChannelImpl.implWrite(SimpleAsynchronousFileChannelImpl.java:359)
at sun.nio.ch.AsynchronousFileChannelImpl.write(AsynchronousFileChannelImpl.java:251)
at cn.ideabuffer.interview.test.io.AsynchronousFileChannelTest.main(AsynchronousFileChannelTest.java:34)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:147)
可見,該問題是內存溢出,不能創建新的線程。
查看原因
那么,為什么會創建這么多的線程呢?
我們先來看一下AsynchronousFileChannelImpl類的write方法:
public final <A> void write(ByteBuffer var1, long var2, A var4, CompletionHandler<Integer, ? super A> var5) {
if(var5 == null) {
throw new NullPointerException("\'handler\' is null");
} else {
this.implWrite(var1, var2, var4, var5);
}
}
這里調用了implWrite方法,implWrite方法是在SimpleAsynchronousFileChannelImpl類中定義的,下面來看一下SimpleAsynchronousFileChannelImpl類的implWrite方法:注意:因為我是在Mac OS上進行測試,windows下是沒有SimpleAsynchronousFileChannelImpl類的
<A> Future<Integer> implWrite(final ByteBuffer var1, final long var2, final A var4, final CompletionHandler<Integer, ? super A> var5) {
if(var2 < 0L) {
throw new IllegalArgumentException("Negative position");
} else if(!this.writing) {
throw new NonWritableChannelException();
} else if(this.isOpen() && var1.remaining() != 0) {
final PendingFuture var8 = var5 == null?new PendingFuture(this):null;
Runnable var7 = new Runnable() {
public void run() {
// 省略一些代碼
...
}
};
this.executor.execute(var7);
return var8;
} else {
ClosedChannelException var6 = this.isOpen()?null:new ClosedChannelException();
if(var5 == null) {
return CompletedFuture.withResult(Integer.valueOf(0), var6);
} else {
Invoker.invokeIndirectly(var5, var4, Integer.valueOf(0), var6, this.executor);
return null;
}
}
}
看一下第15行和第22行,這里都使用了executor來執行具體的寫操作,而executor是在哪里定義的呢?
由于創建AsynchronousFileChannel對象的時候是如下代碼:
AsynchronousFileChannel fileChannel =
AsynchronousFileChannel.open(path, StandardOpenOption.WRITE);
AsynchronousFileChannel的open方法定義如下:
public static AsynchronousFileChannel open(Path file, OpenOption... options)
throws IOException
{
Set<OpenOption> set = new HashSet<OpenOption>(options.length);
Collections.addAll(set, options);
return open(file, set, null, NO_ATTRIBUTES);
}
這里調用了重載的open方法,注意第三個參數為null,該參數的類型就是ExecutorService,查看該方法:
public static AsynchronousFileChannel open(Path file,
Set<? extends OpenOption> options,
ExecutorService executor,
FileAttribute<?>... attrs)
throws IOException
{
FileSystemProvider provider = file.getFileSystem().provider();
return provider.newAsynchronousFileChannel(file, options, executor, attrs);
}
這里的provider是UnixFileSystemProvider,查看該類的newAsynchronousFileChannel方法:
public AsynchronousFileChannel newAsynchronousFileChannel(Path var1, Set<? extends OpenOption> var2, ExecutorService var3, FileAttribute... var4) throws IOException {
UnixPath var5 = this.checkPath(var1);
int var6 = UnixFileModeAttribute.toUnixMode(438, var4);
ThreadPool var7 = var3 == null?null:ThreadPool.wrap(var3, 0);
try {
return UnixChannelFactory.newAsynchronousFileChannel(var5, var2, var6, var7);
} catch (UnixException var9) {
var9.rethrowAsIOException(var5);
return null;
}
}
調用了UnixChannelFactory的newAsynchronousFileChannel方法,該方法代碼如下:
static AsynchronousFileChannel newAsynchronousFileChannel(UnixPath var0, Set<? extends OpenOption> var1, int var2, ThreadPool var3) throws UnixException {
UnixChannelFactory.Flags var4 = UnixChannelFactory.Flags.toFlags(var1);
if(!var4.read && !var4.write) {
var4.read = true;
}
if(var4.append) {
throw new UnsupportedOperationException("APPEND not allowed");
} else {
FileDescriptor var5 = open(-1, var0, (String)null, var4, var2);
return SimpleAsynchronousFileChannelImpl.open(var5, var4.read, var4.write, var3);
}
}
這里就用到了SimpleAsynchronousFileChannelImpl的open方法:
public static AsynchronousFileChannel open(FileDescriptor var0, boolean var1, boolean var2, ThreadPool var3) {
ExecutorService var4 = var3 == null?SimpleAsynchronousFileChannelImpl.DefaultExecutorHolder.defaultExecutor:var3.executor();
return new SimpleAsynchronousFileChannelImpl(var0, var1, var2, var4);
}
可以看到,這里的ExecutorService對象使用了DefaultExecutorHolder中的defaultExecutor:
private static class DefaultExecutorHolder {
static final ExecutorService defaultExecutor = ThreadPool.createDefault().executor();
private DefaultExecutorHolder() {
}
}
再看一下ThreadPool的createDefault方法:
static ThreadPool createDefault() {
int var0 = getDefaultThreadPoolInitialSize();
if(var0 < 0) {
var0 = Runtime.getRuntime().availableProcessors();
}
ThreadFactory var1 = getDefaultThreadPoolThreadFactory();
if(var1 == null) {
var1 = defaultThreadFactory();
}
// 創建executor
ExecutorService var2 = Executors.newCachedThreadPool(var1);
return new ThreadPool(var2, false, var0);
}
可以看到,這里默認創建了一個CachedThreadPool
,在newCachedThreadPool方法中使用了SynchronousQueue作為任務隊列:
public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(),
threadFactory);
}
這里注意第二個參數,第二個參數是設置線程池最大的任務數量,有關線程池請參考之前的文章深入理解Java線程池:ThreadPoolExecutor
也就是說,這里的任務數量是沒有限制的,而SynchronousQueue這個隊列比較特殊,它是一個沒有數據緩沖的BlockingQueue(隊列只能存儲一個元素),生產者線程對其的插入操作put必須等待消費者的移除操作take,反過來也一樣,消費者移除數據操作必須等待生產者的插入。
不像ArrayBlockingQueue或LinkedListBlockingQueue,SynchronousQueue內部并沒有數據緩存空間,你不能調用peek()方法來看隊列中是否有數據元素,因為數據元素只有當你試著取走的時候才可能存在,不取走而只想偷窺一下是不行的,當然遍歷這個隊列的操作也是不允許的。隊列頭元素是第一個排隊要插入數據的線程,而不是要交換的數據。數據是在配對的生產者和消費者線程之間直接傳遞的,并不會將數據緩沖數據到隊列中。可以這樣來理解:生產者和消費者互相等待對方,握手,然后一起離開。
根據我們的測試代碼來看,寫文件的時候會向executor中添加一個線程作為任務來執行,而這時如果磁盤的寫速度太慢,而程序在不停地進行寫任務的添加,這會導致隊列中的對象越來越多,而隊列中的對象就是Runnable對象,也就是線程對象。可以在報錯信息中看到,異常是在Invoker類中:
static <V, A> void invokeIndirectly(final CompletionHandler<V, ? super A> var0, final A var1, final V var2, final Throwable var3, Executor var4) {
try {
var4.execute(new Runnable() {
public void run() {
Invoker.invokeUnchecked(var0, var1, var2, var3);
}
});
} catch (RejectedExecutionException var6) {
throw new ShutdownChannelGroupException();
}
}
這里執行的時候會創建一個線程對象,在調用了execute方法之后,會調用線程池中的addWorker方法添加任務:
private boolean addWorker(Runnable firstTask, boolean core) {
...
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
...
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
在添加任務完成后,會調用start方法來啟動線程。
所以,在磁盤寫速度比較慢的時候,不停地向線程池中添加線程對象并啟動線程,而且隊列的大小沒有限制。
但這個異常并不是堆內存的溢出,堆內存的溢出如下:
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
問題分析
那么,究竟為什么會報不能創建線程的異常呢?
我們先把內存按區域進行以下分類:
- MaxProcessMemory:指的是一個進程的最大內存
- JVMMemory:JVM內存
- ReservedOsMemory:保留的操作系統內存
- ThreadStackSize:線程棧的大小
在java語言里, 當你創建一個線程的時候,虛擬機會在JVM內存創建一個Thread對象同時創建一個操作系統線程,而這個系統線程的內存用的不是JVMMemory,而是系統中剩下的內存(MaxProcessMemory - JVMMemory - ReservedOsMemory)。
具體計算公式如下:
(MaxProcessMemory - JVMMemory - ReservedOsMemory) / (ThreadStackSize) = Number of threads
我們測一下如下代碼:
public class TestNativeOutOfMemoryError {
public static void main(String[] args) {
for (int i = 0;; i++) {
System.out.println("i = " + i);
new Thread(new HoldThread()).start();
}
}
}
class HoldThread extends Thread {
CountDownLatch cdl = new CountDownLatch(1);
public HoldThread() {
this.setDaemon(true);
}
public void run() {
try {
cdl.await();
} catch (InterruptedException e) {
}
}
}
該代碼不停地創建線程,看下結果:
i = 4072
Exception in thread "main" java.lang.OutOfMemoryError: unable to create new native thread
最終停在了4072,也就是創建了4073個線程后報OOM。
查看一下系統的線程數量限制:
sangjiandeMBP:~ sangjian$ sysctl kern.num_taskthreads
kern.num_taskthreads: 4096
可見,系統的線程數量限制為4096,從這個數量來說,和我們運行的結果是一致的。
所以,第一個異常Exception in thread "main" java.lang.OutOfMemoryError: unable to create new native thread
并不一定代表是系統內存不足導致的溢出,也可能是創建的線程數量達到了系統的限制。
解決問題
如果程序中有bug,導致創建大量不需要的線程或者線程沒有及時回收,那么必須解決這個bug,修改參數是不能解決問題的;
-
如果程序確實需要大量的線程,現有的設置不能達到要求,那么可以通過修改MaxProcessMemory,JVMMemory,ThreadStackSize這三個因素,來增加能創建的線程數:
- MaxProcessMemory 使用64位操作系統
- JVMMemory 減少JVMMemory的分配
- ThreadStackSize 減小單個線程的棧大小