R 記錄

library(pheatmap)

data<- read.table("new 1.txt",header = T, row.names = 1,quote = "")

data1 <- log10(data+1)/max(log10(data+1)) 數據標準化

pheatmap::pheatmap(data,cluster_rows = FALSE)

data<- read.table("new 3.txt",header = T, row.names = 1,quote = "")

pheatmap::pheatmap(data,cluster_rows = FALSE)

`data1<- read.table("6",header = T, row.names = 1,quote = "")

max(data1)

pheatmap::pheatmap(data1)

data1<- read.table("10",header = T, row.names = 1,quote = "")

max(data1)

pheatmap::pheatmap(data1)

data1<- read.table("12.txt",header = T, row.names = 1)

da(data1)

? read.table

data1<- read.table("12.txt",header = T, row.names = 1)

pheatmap::pheatmap(data1)

data<- read.table("5",header = T, row.names = 1,quote = "")

pheatmap::pheatmap(data,show_rownames=FALSE)

dr<- dist(as.matrix(t(data3)),method = "euclidean", diag = T, upper = T)

write.table(as.matrix(dr))

p1 <- pheatmap(data3, main = "heatmap name",

? ? ? ? ? ? ? show_rownames=F,? cluster_rows=T, cluster_cols=T,

? ? ? ? ? ? ? clustering_method = "complete",

? ? ? ? ? ? ? clustering_distance_cols = "euclidean",

? ? ? ? ? ? ? clustering_distance_rows = "euclidean",

? ? ? ? ? ? ? fontsize = 16, fontsize_col = 16, cellwidth = 24,

? ? ? ? ? ? ? cellheight = 2)

setwd("G:/jiaoji")? ##set work path

r <- read.table("5",header=T)? ##read table of expression data, have table header

row.names(r) <- r$NAME? ##set rowname

r1 <- r[,-1]? ##delete the first column

r0<-data.matrix(r1)? ##convert data frame[size=15px] to numeric matrix[/size]

ra <- scale(r0,center = T, scale = T)? ##scaling and centering for per column data, normalization?

library(proxy)? ? ? ? ? ##upload the proxy package for simil function

dr <- dist(as.matrix(t(ra)), method = "euclidean", diag = T, upper = T)? ? ? ? ##[size=13px]calculate the euclidean distance of columns, export all data [/size]

write.table(as.matrix(dr),"test.ed.txt")? ? ##export ED matrix data to test.ed.txt file

sr <- simil(as.matrix(t(ra)), method = "correlation", diag = T, upper = T)? ##[size=13px]calculate the correlation coefficient of columns, export all data [/size]

write.table(as.matrix(sr),"test.cc.txt")? ? ##export [size=13px]correlation coefficient[/size] matrix data to test.ed.txt file

library(pheatmap)

breaks1 <- seq(-10, 10, by = 0.2)? ##sets the minimum (0), the maximum (15), and the increasing steps (+1) for the color scale

breaks2 <- seq(-10,10,length=100)

bk3 = unique(c(seq(-2,0.98, length=50), seq(0.98,1, 50), seq(1, 4, length=50)))

colors = colorRampPalette(rev(c("#D73027", "#FC8D59", "#FEE090", "#FFFFBF", "#E0F3F8", "#91BFDB", "#4575B4")))(length(breaks1))

p1 <- pheatmap(ra, main = "heatmap name", show_rownames=F,? cluster_rows=T, cluster_cols=T, clustering_method = "complete", clustering_distance_cols = "euclidean", clustering_distance_rows = "euclidean", fontsize = 16, fontsize_col = 16, cellwidth = 24, cellheight = 2, breaks = breaks1, color = colors)? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ##use scale data for drawing heatmap

p2 <- pheatmap(r0, main = "heatmap name", show_rownames=F, scale = "column", cluster_rows=T, cluster_cols=T, clustering_method = "complete", clustering_distance_cols = "euclidean", clustering_distance_rows = "euclidean", fontsize = 16, fontsize_col = 16, cellwidth = 24, cellheight = 2, breaks = breaks1, color = colors)? ? ? ? ? ? ? ? ? ##pheatmap can scale the data and don't need scale data first, the darwing picture

ra <- scale(data3,center = T, scale = T)

pheatmap::pheatmap(ra)

https://www.google.com/search?ei=lZRqWsjoD8ml8AXn8oLIDQ&q=+log++%E5%BD%92%E4%B8%80%E5%8C%96+&oq=+log++%E5%BD%92%E4%B8%80%E5%8C%96+&gs_l=psy-ab.3..0i30k1.64983.77069.0.77263.13.13.0.0.0.0.145.1335.7j6.13.0....0...1c.1.64.psy-ab..0.1.97....0.6TGjuSOsw3A

cluster_cols = TRUE cutree_cols = NA annotation_col = NA

library(DESeq2)? #加載包

setwd("G:/Auxin")

library(DESeq2)

countData <- read.table("7",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","AACC_1"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.1 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_1.cvs",row.names = F)

countData <- read.table("22",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","AACC_2"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.1 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_2.cvs",row.names = F)

countData <- read.table("33",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","AACC_3"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.1 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_3.cvs",row.names = F)


countData <- read.table("66",header = T, row.names = 1,quote = "")


countData <- ceiling (countData)

condition <- factor(c("MPV","AACC_6"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.1 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_6.cvs",row.names = F)

countData <- read.table("77",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","AACC_7"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.1 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_7.cvs",row.names = F)

countData <- read.table("12345.csv",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_1","AACC_1","AACC_1"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_1.cvs",row.names = F)

countData <- read.table("22",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_2","AACC_2","AACC_2"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_2.cvs",row.names = F)

countData <- read.table("33.csv",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_3","AACC_3","AACC_3"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_3.cvs",row.names = F)

countData <- read.table("55.csv",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_5","AACC_5","AACC_5"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_5.cvs",row.names = F)

countData <- read.table("66.csv",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_6","AACC_6","AACC_6"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_6.cvs",row.names = F)

countData <- read.table("77",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_7","AACC_7","AACC_7"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_7.cvs",row.names = F)

countData <- read.table("88",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_8","AACC_8","AACC_8"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_8.cvs",row.names = F)

library(pheatmap)

data<- read.csv("outfile000.csv",header = T, row.names = 1,quote = "")

pheatmap::pheatmap(data,cluster_rows =FALSE,

? ? ? ? ? ? ? ? ? cluster_cols = FALSE)


?pheatmap

setwd("G:/restance")

countData <- read.csv("AACC_1.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_1","AACC_1","AACC_1"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_1.cvs",row.names = F)

countData <- read.csv("AACC_2.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_2","AACC_2","AACC_2"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_2.cvs",row.names = F)

countData <- read.csv("AACC_3.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_3","AACC_3","AACC_3"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_3.cvs",row.names = F)

countData <- read.csv("AACC_4.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_4","AACC_4","AACC_4"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_4.cvs",row.names = F)

countData <- read.csv("AACC_5.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_5","AACC_5","AACC_5"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_5.cvs",row.names = F)

countData <- read.csv("AACC_6.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_6","AACC_6","AACC_6"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_6.cvs",row.names = F)

countData <- read.csv("AACC_7.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_7","AACC_7","AACC_7"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/Auxin/mpv_vs_AACC_7.cvs",row.names = F)

countData <- read.csv("AACC_1.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_1","AACC_1","AACC_1"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/restance/mpv_vs_AACC_1.cvs",row.names = F)

countData <- read.csv("AACC_5.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_5","AACC_5","AACC_5"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/restance/mpv_vs_AACC_5.cvs",row.names = F)

countData <- read.csv("AACC_7.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_7","AACC_7","AACC_7"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/restance/mpv_vs_AACC_7.cvs",row.names = F)

countData <- read.csv("AACC_8.CSV",header = T, row.names = 1,quote = "")

countData <- ceiling (countData)

condition <- factor(c("MPV","MPV","MPV","AACC_8","AACC_8","AACC_8"))

colData <- data.frame(row.names=colnames(countData), condition)

dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), design= ~ condition )

dds2 <- DESeq(dds)

resultsNames(dds2)

res <- results(dds2)

table(res$padj<0.05) #取P值小于0.05的結果

res <- res[order(res$padj),]

diff_gene_deseq2 <-subset(res,padj < 0.01 & (log2FoldChange > 1 | log2FoldChange < -1))

diff_gene_deseq2 <- row.names(diff_gene_deseq2)

resdata <-? merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata,file= "G:/restance/mpv_vs_AACC_8.cvs",row.names = F)

library(pheatmap)

data<- read.csv("outfile_last.csv",header = T, row.names = 1,quote = "")

pheatmap::pheatmap(data,cluster_rows = FALSE,cluster_cols = FALSE)

setwd("G:/glugene")

library(pheatmap)

data<- read.csv("outfilelast.csv",header = T, row.names = 1,quote = "")

pheatmap::pheatmap(data,cluster_rows = FALSE,cluster_cols = FALSE)

setwd("G:/Auxin")

data<- read.csv("outfile000.csv",header = T, row.names = 1,quote = "")

pheatmap::pheatmap(data,cluster_rows = FALSE,cluster_cols = FALSE)

setwd("G:/restance")

data<- read.csv("outfile_last.csv",header = T, row.names = 1,quote = "")

pheatmap::pheatmap(data,cluster_rows = FALSE,cluster_cols = FALSE)

?著作權歸作者所有,轉載或內容合作請聯系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,572評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,071評論 3 414
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,409評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,569評論 1 307
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,360評論 6 404
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,895評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 42,979評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,123評論 0 286
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,643評論 1 333
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,559評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,742評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,250評論 5 356
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 43,981評論 3 346
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,363評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,622評論 1 280
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,354評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,707評論 2 370

推薦閱讀更多精彩內容

  • 1.getwd setwd2.rm(list=ls())3.ESC停止運行3.n() n_distinct() ...
    瓊脂糖閱讀 1,774評論 0 0
  • 一、讀文章獲取下載數據 1、讀文章 一般我都從NCBI上面下載文章,找到數據號 2、下載數據 進入NCBI的GEO...
    黃思源_3a22閱讀 6,184評論 0 2
  • http://blog.sina.com.cn/s/blog_6bc5205e0102vma9.html inst...
    付德剛Q閱讀 3,057評論 0 3
  • 今天醒來煮好早餐后便立馬給偉瀚媽媽電話告訴她我已經好很多了,而且我直接跟她說我想吃番薯,家里能否帶些過來,后來我給...
    蘭Zena閱讀 131評論 0 0
  • 也想過當科學家 也想過拯救世界 也想過永不回家 在春天的原野上打鬧 在夏天的蟬鳴中玩水 在秋天的麥垛里躲藏 在冬天...
    子慨閱讀 290評論 0 4