算法(12)- NP完全性

P

L是{0, 1}* 的子集, 如果對任意的輸入串x, 算法都能在多項式時間內判定(decide)x是否屬于L, 則我們說算法能判定L, 這個語言L是P.
P = {L是{0, 1}※ 的子集, 存在著一個算法A, 可以在多項式時間內判定L};

NP

能夠被多項式時間內算法A驗證(verify)的語言L是NP問題. 也就是說, 給定了輸入串x和一個猜測解y, 能夠用某算法A在多項式時間內給出是1或者0, 1代表x∈L, 0代表x?L. 這個語言L就是屬于NP問題(Non Polynomial Deterministic Problem)

形式化定義:
一個語言L ∈ NP 當且僅當:
存在有兩個輸入的多項式時間算法A和常數c,使得
L = {x∈{0, 1}* : 存在一個證書(一個可滿足解)y,其長度 |y| = O(|x|c), 并使得A(x, y) = 1}.

L has a polynomial-time verifier, an algorithm V with the property that x ∈ L if and only if V accepts (x, y) for some y.

比如哈密頓回路問題: Ham-Cycle = {<G>: G is a HamGraph with a Ham cycle}

若某人給定了一個圖G和一個環(也許是A-B-E-C-D-A), 聲稱該環為哈密頓回路, 我們可以很容易地設計一個簡單的算法: "直接驗證環上的點是否是包含了所有的圖上的點, 以及這個環上的邊是否確實在圖中都存在."
這個算法將判定這樣的有(G和環)的二輸入是否是滿足L = "圖擁有哈密頓回路".

也就是說, 對L來說, 存在一個兩輸入的多項式時間算法A(x, y), 能夠驗證某特定輸入(x, y)是屬于L的.

NPC

NPC是NP中最難的語言, 如果任意一個NP完全問題(NPC問題)能夠在多項式時間內得到解決, 那么NP中每一個問題都存在一個多項式解, 實現P = NP

證明某種語言L是NP完全語言的方法

(1)先驗證L∈NP; //對一個串x, 存在一個多項式級別長度的解y, 能用一個多項式級別時間復雜度的算法A來verify ;

  • Thus, we can verify CIRCUIT-SAT in polynomial time, and CIRCUIT-SAT ∈ NP. (CLRS)
    (2)規約: 把L'能夠用多項式時間內的f映射到L, 說明L'<=L(L比已知的NPC還難), 加上已知L'是NP, 那么L必然是NP完全的;

幾個重要的NPC問題的邏輯鏈

  • CircuitSAT-->SAT-->3-CNF-SAT-->Clique-->VertexCover-->HamCycle-->TSP(旅行商問題)

1. CircuitSAT to SAT

布爾公式是可滿足的
(1)SAT ∈ NP:
給定證書時多項式時間內可驗證: 給定一個布爾公式x, 給定一個一個證書輸入y, 比如y={1, 1, 1}, 然后按照布爾公式的數學運算規則, 那么我們就能在多項式時間內求解出來, 從而看到是否這個(x, y)能夠得到1, 如果能得到, 那么其就是被滿足了. 無論其最后是否被滿足, 我們都能在多項式時間內驗證出來.
(2)CircuitSAT能在多項式時間內規約為SAT問題
只要把電路中的x1, x2, x3每一個輸入都用一個布爾變元表達, 然后每一個邏輯門都用一個布爾公式來對應, 那么就能在多項式時間內把CircuitSAT問題轉化為SAT問題. 因此, CircuitSAT < SAT. SAT比已知為NPC的問題還難, 因此SAT也是NPC.

2. SAT to 3-CNF-SAT

合取范式形式的布爾公式的可滿足性問題是NP完全的.
(1) 3-CNF-SAT ∈ NP:
給定證書時多項式時間內可驗證: 類似SAT問題, 給定一個合取范式, 我們給定一個證書輸入y, 然后按照數學運算規則, 那么我們能在多項式時間內得知整個合取范式的最后值是否為1.
(2) SAT能在多項式時間內規約為3-CNF-SAT:
通過如下步驟, 每個布爾公式都能成功地被轉化為合取范式.
a. 畫二叉語法分析樹, 從而寫出改寫出一個合取范式(每個子句都是被滿足才能整個式子成立), 但是此時子句里面還沒有都變成析取;
b. 用真值表, 把表中所有子句最后能取0的項都拼出來, 就構成了一個析取范式AVBVC... (記得我們本來應該取的是表中子句最后值為1的情況, 這為接下去取反留了伏筆)
c. 用德摩根律取反析取范式, 從而得到CNF
d. 添加p, q的正反形式, 從而在每個子句湊夠三個變元;

可以看到, 所有的SAT都能在多項式時間內(每一步有確定有限大小的步驟, 而不是n^n這樣)的操作完成轉化為3-CNF. 因此SAT<3-CNF-SAT, 從而3-CNF-SAT是NPC的.

3. Clique團問題

尋找圖中規模最大的圖案的最優化問題.
其等價的判定問題是CLIQUE = {<G, k>: G是一個包含規模為k的團}
證明團問題是NPC:
(1) Clique∈NP:
對于一個給定的圖G=(V, E), 如果給定某頂點集V'作為G的一個證書, 那么我們可以檢查任意一對頂點u, v∈V', 通過檢查邊(u, v)是否屬于E(記得團的要求是該頂點集兩兩之間都得有邊), 就可以在多項式時間內確定V'是否是一個團. C(n, 2) = O(n^2), 這是n的多項式時間.
(2) 把3-CNF-SAT規約到Clique:
通過如下步驟
給定一個含有k個子句的實例, 假定其是可滿足的, 我們總是可以構造一個包含3k個頂點的圖, 其中最大團是包含k個頂點. 構造方法: 不在同一個三元組, 且不是自己的非的結點之間連線.
那么我們知道一共會有k個分組, 每個分組之間不能相連, 且這個式子是可滿足的, 因此每個分組必須出一個1, 只要把這個取1的元素和其他每個組取1的元素連接起來, 就是最大團. 而且最大團會有k個結點最后.
這個過程中只需要按照構造方法連線即可, 時間復雜度是O(C<n, 2>) = O(n^2)

4. Vertex Cover頂點覆蓋問題

描述: 在一個給定的圖中, 找出具有最小規模的頂點覆蓋. 可以把這個最優化問題描述為一個判定問題, 即一個圖是否具有一個給定規模k的頂點覆蓋.
證明:
(1) VC∈NP:
(2) 把Clique規約到VC:
任意一個給定的Clique圖G(V, E), 設其的最大團是V', 我們可以取其補圖(原來有邊變成沒邊, 沒邊變成有邊), 即可獲得V-V'為一個頂點覆蓋.

這是因為取任意的一條邊(u, v)自E', 那么在G中, u, v點原本是不相連的, 那么u或者v至少有一個是不屬于最大團V'中的, 即u或者v至少有一個是屬于V-V'的. 注意到(u, v)是我們任意取自E'的, 從而可知在G的補圖里面, 任意的一條邊上, 都有至少一個點是屬于V-V'的, 那么V-V'就是一個頂點覆蓋!!!

5. 哈密頓回路

無向圖G中的哈密頓回路是指能通過V中每個頂點的簡單回路.
哈密頓回路問題: 圖G中是否有一條哈密頓回路(過所有點的簡單回路).
證明很復雜, 我們只要知道Ham-Cycle問題是一個NPC即可.

6. 旅行商問題

描述: 售貨員希望進行一次巡回旅行, 走一個哈密頓回路, 最后回到除法的城市, 從城市i到城市j的旅行費用為一個整數c(i, j), 旅行所需費的總費用是旅行經過的各邊的費用之和, 而售貨員希望使整個旅行費用最低. (最優化問題)
判定形式語言是: 圖G中存在一個最大花費為k的旅行回路.
這是一個NPC.
證明:
(1) TSP∈NP:
給定一個圖G, 限定最大花費為k, 那么給定一個證書y(y在這里是一個路線, 一個頂點的序列), 我們將可以檢查: a, 該序列y包含且只包含了所有V中頂點一次. b, 該序列上的相鄰頂點兩兩之間在圖上是否有邊 c,對序列y上的邊的費用進行求和, 看是否在k之內. 這個過程是一個多項式時間內的算法, T = O(V).
(2) 把哈密頓回路問題歸約到TSP:
對每一個哈密頓回路的一個實例G(V, E), 我們都可以構造這樣一個TSP的圖G'(V, E'), E' = {(i, j), 只要i!=j, i, j∈V};
c(i, j) = 0, if (i, j)∈E (E這里是哈密頓回路的邊集合)
c(i, j) = 1, if (i, j) = 1 if (i, j)?E.

然后求解TSP圖G'上的限定最大花費為0的旅行路線.
顯然這個構造的時間復雜度是O(V^2), 是多項式時間內的算法.

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,250評論 6 530
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 97,923評論 3 413
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事?!?“怎么了?”我有些...
    開封第一講書人閱讀 175,041評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,475評論 1 308
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,253評論 6 405
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,801評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 42,882評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,023評論 0 285
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,530評論 1 331
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,494評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,639評論 1 366
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,177評論 5 355
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 43,890評論 3 345
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,289評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,552評論 1 281
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,242評論 3 389
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,626評論 2 370

推薦閱讀更多精彩內容