從ReLU到Sinc,26種神經網絡激活函數可視化

姓名:周雪寧

學號:1702110196

轉載:https://mp.weixin.qq.com/s/7DgiXCNBS5vb07WIKTFYRQ

【嵌牛導讀】:在本文中,作者對包括 Relu、Sigmoid 在內的 26 種激活函數做了可視化,并附上了神經網絡的相關屬性,為大家了解激活函數提供了很好的資源。

【嵌牛鼻子】:深度學習,神經網絡,激活函數

【嵌牛提問】:不同的激活函數的具體形式?它們不同的優勢是什么?

【嵌牛正文】:

在神經網絡中,激活函數決定來自給定輸入集的節點的輸出,其中非線性激活函數允許網絡復制復雜的非線性行為。正如絕大多數神經網絡借助某種形式的梯度下降進行優化,激活函數需要是可微分(或者至少是幾乎完全可微分的)。此外,復雜的激活函數也許產生一些梯度消失或爆炸的問題。因此,神經網絡傾向于部署若干個特定的激活函數(identity、sigmoid、ReLU

及其變體)。

下面是 26 個激活函數的圖示及其一階導數,圖的右側是一些與神經網絡相關的屬性。

1. Step

激活函數 Step 更傾向于理論而不是實際,它模仿了生物神經元要么全有要么全無的屬性。它無法應用于神經網絡,因為其導數是 0(除了零點導數無定義以外),這意味著基于梯度的優化方法并不可行。

2. Identity

通過激活函數 Identity,節點的輸入等于輸出。它完美適合于潛在行為是線性(與線性回歸相似)的任務。當存在非線性,單獨使用該激活函數是不夠的,但它依然可以在最終輸出節點上作為激活函數用于回歸任務。

3. ReLU

修正線性單元(Rectified

linear unit,ReLU)是神經網絡中最常用的激活函數。它保留了 step

函數的生物學啟發(只有輸入超出閾值時神經元才激活),不過當輸入為正的時候,導數不為零,從而允許基于梯度的學習(盡管在 x=0

的時候,導數是未定義的)。使用這個函數能使計算變得很快,因為無論是函數還是其導數都不包含復雜的數學運算。然而,當輸入為負值的時候,ReLU

的學習速度可能會變得很慢,甚至使神經元直接無效,因為此時輸入小于零而梯度為零,從而其權重無法得到更新,在剩下的訓練過程中會一直保持靜默。

4. Sigmoid

Sigmoid

因其在 logistic 回歸中的重要地位而被人熟知,值域在 0 到 1 之間。Logistic

Sigmoid(或者按通常的叫法,Sigmoid)激活函數給神經網絡引進了概率的概念。它的導數是非零的,并且很容易計算(是其初始輸出的函數)。然而,在分類任務中,sigmoid

正逐漸被 Tanh 函數取代作為標準的激活函數,因為后者為奇函數(關于原點對稱)。

5. Tanh

在分類任務中,雙曲正切函數(Tanh)逐漸取代

Sigmoid

函數作為標準的激活函數,其具有很多神經網絡所鐘愛的特征。它是完全可微分的,反對稱,對稱中心在原點。為了解決學習緩慢和/或梯度消失問題,可以使用這個函數的更加平緩的變體(log-log、softsign、symmetrical

sigmoid 等等)

6. Leaky ReLU

經典(以及廣泛使用的)ReLU 激活函數的變體,帶泄露修正線性單元(Leaky ReLU)的輸出對負值輸入有很小的坡度。由于導數總是不為零,這能減少靜默神經元的出現,允許基于梯度的學習(雖然會很慢)。

7. PReLU

參數化修正線性單元(Parameteric

Rectified Linear Unit,PReLU)屬于 ReLU 修正類激活函數的一員。它和 RReLU 以及 Leaky ReLU

有一些共同點,即為負值輸入添加了一個線性項。而最關鍵的區別是,這個線性項的斜率實際上是在模型訓練中學習到的。

8. RReLU

隨機帶泄露的修正線性單元(Randomized

Leaky Rectified Linear Unit,RReLU)也屬于 ReLU 修正類激活函數的一員。和 Leaky ReLU 以及

PReLU 很相似,為負值輸入添加了一個線性項。而最關鍵的區別是,這個線性項的斜率在每一個節點上都是隨機分配的(通常服從均勻分布)。

9. ELU

指數線性單元(Exponential

Linear Unit,ELU)也屬于 ReLU 修正類激活函數的一員。和 PReLU 以及 RReLU

類似,為負值輸入添加了一個非零輸出。和其它修正類激活函數不同的是,它包括一個負指數項,從而防止靜默神經元出現,導數收斂為零,從而提高學習效率。

10. SELU

擴展指數線性單元(Scaled

Exponential Linear Unit,SELU)是激活函數指數線性單元(ELU)的一個變種。其中λ和α是固定數值(分別為

1.0507 和 1.6726)。這些值背后的推論(零均值/單位方差)構成了自歸一化神經網絡的基礎(SNN)。

11. SReLU

S 型整流線性激活單元(S-shaped Rectified Linear Activation Unit,SReLU)屬于以 ReLU 為代表的整流激活函數族。它由三個分段線性函數組成。其中兩種函數的斜度,以及函數相交的位置會在模型訓練中被學習。

12. Hard Sigmoid

Hard Sigmoid 是 Logistic Sigmoid 激活函數的分段線性近似。它更易計算,這使得學習計算的速度更快,盡管首次派生值為零可能導致靜默神經元/過慢的學習速率(詳見 ReLU)。

13. Hard Tanh

Hard Tanh 是 Tanh 激活函數的線性分段近似。相較而言,它更易計算,這使得學習計算的速度更快,盡管首次派生值為零可能導致靜默神經元/過慢的學習速率(詳見 ReLU)。

14. LeCun Tanh

LeCun Tanh(也被稱作 Scaled Tanh)是 Tanh 激活函數的擴展版本。它具有以下幾個可以改善學習的屬性:f(± 1) = ±1;二階導數在 x=1 最大化;且有效增益接近 1。

15. ArcTan

視覺上類似于雙曲正切(Tanh)函數,ArcTan 激活函數更加平坦,這讓它比其他雙曲線更加清晰。在默認情況下,其輸出范圍在-π/2 和π/2 之間。其導數趨向于零的速度也更慢,這意味著學習的效率更高。但這也意味著,導數的計算比 Tanh 更加昂貴。

16. Softsign

Softsign 是 Tanh 激活函數的另一個替代選擇。就像 Tanh 一樣,Softsign 是反對稱、去中心、可微分,并返回-1 和 1 之間的值。其更平坦的曲線與更慢的下降導數表明它可以更高效地學習。另一方面,導數的計算比 Tanh 更麻煩。

17. SoftPlus

作為

ReLU 的一個不錯的替代選擇,SoftPlus 能夠返回任何大于 0 的值。與 ReLU 不同,SoftPlus

的導數是連續的、非零的,無處不在,從而防止出現靜默神經元。然而,SoftPlus 另一個不同于 ReLU

的地方在于其不對稱性,不以零為中心,這興許會妨礙學習。此外,由于導數常常小于 1,也可能出現梯度消失的問題。

18. Signum

激活函數 Signum(或者簡寫為 Sign)是二值階躍激活函數的擴展版本。它的值域為 [-1,1],原點值是 0。盡管缺少階躍函數的生物動機,Signum 依然是反對稱的,這對激活函數來說是一個有利的特征。

19. Bent Identity

激活函數

Bent Identity 是介于 Identity 與 ReLU

之間的一種折衷選擇。它允許非線性行為,盡管其非零導數有效提升了學習并克服了與 ReLU 相關的靜默神經元的問題。由于其導數可在 1

的任意一側返回值,因此它可能容易受到梯度爆炸和消失的影響。

20. Symmetrical Sigmoid

Symmetrical Sigmoid 是另一個 Tanh 激活函數的變種(實際上,它相當于輸入減半的 Tanh)。和 Tanh 一樣,它是反對稱的、零中心、可微分的,值域在 -1 到 1 之間。它更平坦的形狀和更慢的下降派生表明它可以更有效地進行學習。

21. Log Log

Log Log 激活函數(由上圖 f(x) 可知該函數為以 e 為底的嵌套指數函數)的值域為 [0,1],Complementary Log Log 激活函數有潛力替代經典的 Sigmoid 激活函數。該函數飽和地更快,且零點值要高于 0.5。

22. Gaussian

高斯激活函數(Gaussian)并不是徑向基函數網絡(RBFN)中常用的高斯核函數,高斯激活函數在多層感知機類的模型中并不是很流行。該函數處處可微且為偶函數,但一階導會很快收斂到零。

23. Absolute

顧名思義,絕對值(Absolute)激活函數返回輸入的絕對值。該函數的導數除了零點外處處有定義,且導數的量值處處為 1。這種激活函數一定不會出現梯度爆炸或消失的情況。

24. Sinusoid

如同余弦函數,Sinusoid(或簡單正弦函數)激活函數為神經網絡引入了周期性。該函數的值域為 [-1,1],且導數處處連續。此外,Sinusoid 激活函數為零點對稱的奇函數。

25. Cos

如同正弦函數,余弦激活函數(Cos/Cosine)為神經網絡引入了周期性。它的值域為 [-1,1],且導數處處連續。和 Sinusoid 函數不同,余弦函數為不以零點對稱的偶函數。

26. Sinc

Sinc 函數(全稱是 Cardinal Sine)在信號處理中尤為重要,因為它表征了矩形函數的傅立葉變換(Fourier transform)。作為一種激活函數,它的優勢在于處處可微和對稱的特性,不過它比較容易產生梯度消失的問題。

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,663評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,125評論 3 414
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,506評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,614評論 1 307
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,402評論 6 404
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,934評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,021評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,168評論 0 287
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,690評論 1 333
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,596評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,784評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,288評論 5 357
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,027評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,404評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,662評論 1 280
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,398評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,743評論 2 370

推薦閱讀更多精彩內容