一.多元線性回歸方程
假設樣本中有m個特征量,那么對應的線性回歸方程如下
二.損失函數的構造
假設樣本中有n個訓練集
訓練集
在m個輸出變量y中,用實際值減去回歸方程中的預測值,平方求和再求均值來反映回歸方程中的輸出值與實際輸出值的偏差程度平方求和可以避免
不同的正負情況在求和過程中抵消偏差,假如對于某一列中
,另一列中
三.迭代過程
利用梯度下降原理來將損失函數不斷變小直至收斂,如果對梯度下降不是很清楚的話,可以了解梯度下降和線性回歸(一)附python代碼實現 - 簡書。
所以:
四.利用多元線性回歸分析波士頓房價
#調用庫
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import math
#查看數據集的前30行
df = pd.read_csv("波士頓房價2.csv", index_col=None)
df.head(30) # 查看數據集的前30行
效果如下:
訓練集
需要下載數據集的可以訪問百度網盤 請輸入提取碼,提取碼1p23
CRIM=floor.loc[:,'CRIM'].values
ZN=floor.loc[:,'ZN'].values
INDUS=floor.loc[:,'INDUS'].values
CHAS=floor.loc[:,'CHAS'].values
NOX=floor.loc[:,'NOX'].values
RM=floor.loc[:,'RM'].values
AGE=floor.loc[:,'AGE'].values
DIS=floor.loc[:,'DIS'].values
RAD=floor.loc[:,'RAD'].values
TAX=floor.loc[:,'TAX'].values
PTRATIO=floor.loc[:,'PTRATIO'].values
LSTAT=floor.loc[:,'LSTAT'].values
MEDV=floor.loc[:,'MEDV'].values
各個特征量含義如下:
CRIM: 城鎮人均犯罪率
ZN: 住宅用地所占比例
INDUS: 城鎮中非住宅用地所占比例
CHAS: 虛擬變量,用于回歸分析
NOX: 環保指數
RM: 每棟住宅的房間數
AGE: 1940 年以前建成的自住單位的比例
DIS: 距離 5 個波士頓的就業中心的加權距離
RAD: 距離高速公路的便利指數
TAX: 每一萬美元的不動產稅率
PTRATIO: 城鎮中的教師學生比例
B: 城鎮中的黑人比例
LSTAT: 地區中有多少房東屬于低收入人群
MEDV: 自住房屋房價中位數(也就是均價)
在進行梯度下降前,我們需要分割一下數據集,查看數據集大小后,按8:2的比例,將數據集的前406行作為訓練集,后面100行作為測試集
訓練集大小
測試集劃分
測試集
受能力影響,筆者用最比較繁瑣的代碼實現了梯度下降更新,如果熟悉矩陣乘法,需要簡單的實現,可以參考多元線性回歸-波士頓房價預測問題python_W_yu_cheng的博客-CSDN博客_波士頓房價問題數學建模。代碼如下
#梯度下降法優化擬合方程
#設定參數
learning_rate = 0.001
l=len(MEDV)-106
#損失函數
def L(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,y,theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12):
return pow(theta1*x1+theta2*x2+theta3*x3+theta4*x4+theta5*x5+theta6*x6+theta7*x7+theta8*x8+theta9*x9+theta10*x10+theta11*x11+theta12*x12+theta0-y,2)/(2*l)
#損失函數關于theta1求偏導
def L1(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,y,theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12):
return -x1*(theta1*x1+theta2*x2+theta3*x3+theta4*x4+theta5*x5+theta6*x6+theta7*x7+theta8*x8+theta9*x9+theta10*x10+theta11*x11+theta12*x12+theta0-y)/l
#損失函數關于theta2求偏導
def L2(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,y,theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12):
return -x2*(theta1*x1+theta2*x2+theta3*x3+theta4*x4+theta5*x5+theta6*x6+theta7*x7+theta8*x8+theta9*x9+theta10*x10+theta11*x11+theta12*x12+theta0-y)/l
#損失函數關于theta3求偏導
def L3(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,y,theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12):
return -x3*(theta1*x1+theta2*x2+theta3*x3+theta4*x4+theta5*x5+theta6*x6+theta7*x7+theta8*x8+theta9*x9+theta10*x10+theta11*x11+theta12*x12+theta0-y)/l
#損失函數關于theta4求偏導
def L4(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,y,theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12):
return -x4*(theta1*x1+theta2*x2+theta3*x3+theta4*x4+theta5*x5+theta6*x6+theta7*x7+theta8*x8+theta9*x9+theta10*x10+theta11*x11+theta12*x12+theta0-y)/l
#損失函數關于theta5求偏導
def L5(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,y,theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12):
return -x5*(theta1*x1+theta2*x2+theta3*x3+theta4*x4+theta5*x5+theta6*x6+theta7*x7+theta8*x8+theta9*x9+theta10*x10+theta11*x11+theta12*x12+theta0-y)/l
#損失函數關于theta6求偏導
def L6(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,y,theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12):
return -x6*(theta1*x1+theta2*x2+theta3*x3+theta4*x4+theta5*x5+theta6*x6+theta7*x7+theta8*x8+theta9*x9+theta10*x10+theta11*x11+theta12*x12+theta0-y)/l
#損失函數關于theta7求偏導
def L7(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,y,theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12):
return -x7*(theta1*x1+theta2*x2+theta3*x3+theta4*x4+theta5*x5+theta6*x6+theta7*x7+theta8*x8+theta9*x9+theta10*x10+theta11*x11+theta12*x12+theta0-y)/l
#損失函數關于theta8求偏導
def L8(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,y,theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12):
return -x8*(theta1*x1+theta2*x2+theta3*x3+theta4*x4+theta5*x5+theta6*x6+theta7*x7+theta8*x8+theta9*x9+theta10*x10+theta11*x11+theta12*x12+theta0-y)/l
#損失函數關于theta9求偏導
def L9(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,y,theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12):
return -x9*(theta1*x1+theta2*x2+theta3*x3+theta4*x4+theta5*x5+theta6*x6+theta7*x7+theta8*x8+theta9*x9+theta10*x10+theta11*x11+theta12*x12+theta0-y)/l
#損失函數關于theta10求偏導
def L10(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,y,theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12):
return -x10*(theta1*x1+theta2*x2+theta3*x3+theta4*x4+theta5*x5+theta6*x6+theta7*x7+theta8*x8+theta9*x9+theta10*x10+theta11*x11+theta12*x12+theta0-y)/l
#損失函數關于theta11求偏導
def L11(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,y,theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12):
return -x11*(theta1*x1+theta2*x2+theta3*x3+theta4*x4+theta5*x5+theta6*x6+theta7*x7+theta8*x8+theta9*x9+theta10*x10+theta11*x11+theta12*x12+theta0-y)/l
#損失函數關于theta12求偏導
def L12(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,y,theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12):
return -x12*(theta1*x1+theta2*x2+theta3*x3+theta4*x4+theta5*x5+theta6*x6+theta7*x7+theta8*x8+theta9*x9+theta10*x10+theta11*x11+theta12*x12+theta0-y)/l
#損失函數關于theta0求偏導
def L13(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,y,theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12):
return -(theta1*x1+theta2*x2+theta3*x3+theta4*x4+theta5*x5+theta6*x6+theta7*x7+theta8*x8+theta9*x9+theta10*x10+theta11*x11+theta12*x12+theta0-y)/l
#損失函數值變化記錄數組
Loss=[]
#未迭代時的損失函數
Loss0=0
for i in range(l):
Loss0=Loss0+L(CRIM[i],ZN[i],INDUS[i],CHAS[i],NOX[i],RM[i],AGE[i],DIS[i],RAD[i],TAX[i],PTRATIO[i],LSTAT[i],MEDV[i],10,10,10,10,10,10,10,10,10,10,10,10,10)
Loss.append(Loss0)
#初始化theta0 theta1
theta0=10
theta1=10
theta2=10
theta3=10
theta4=10
theta5=10
theta6=10
theta7=10
theta8=10
theta9=10
theta10=10
theta11=10
theta12=10
#進行迭代
for i in range(2000):
dertheta0=0
dertheta1=0
dertheta2=0
dertheta3=0
dertheta4=0
dertheta5=0
dertheta6=0
dertheta7=0
dertheta8=0
dertheta9=0
dertheta10=0
dertheta11=0
dertheta12=0
dertheta13=0
Loss1=0
for j in range(l):
dertheta0=dertheta0+L13(CRIM[j],ZN[j],INDUS[j],CHAS[j],NOX[j],RM[j],AGE[j],DIS[j],RAD[j],TAX[j],PTRATIO[j],LSTAT[j],MEDV[j],theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12)
dertheta1=dertheta0+L1(CRIM[j],ZN[j],INDUS[j],CHAS[j],NOX[j],RM[j],AGE[j],DIS[j],RAD[j],TAX[j],PTRATIO[j],LSTAT[j],MEDV[j],theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12)
dertheta2=dertheta0+L2(CRIM[j],ZN[j],INDUS[j],CHAS[j],NOX[j],RM[j],AGE[j],DIS[j],RAD[j],TAX[j],PTRATIO[j],LSTAT[j],MEDV[j],theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12)
dertheta3=dertheta0+L3(CRIM[j],ZN[j],INDUS[j],CHAS[j],NOX[j],RM[j],AGE[j],DIS[j],RAD[j],TAX[j],PTRATIO[j],LSTAT[j],MEDV[j],theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12)
dertheta4=dertheta0+L4(CRIM[j],ZN[j],INDUS[j],CHAS[j],NOX[j],RM[j],AGE[j],DIS[j],RAD[j],TAX[j],PTRATIO[j],LSTAT[j],MEDV[j],theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12)
dertheta5=dertheta0+L5(CRIM[j],ZN[j],INDUS[j],CHAS[j],NOX[j],RM[j],AGE[j],DIS[j],RAD[j],TAX[j],PTRATIO[j],LSTAT[j],MEDV[j],theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12)
dertheta6=dertheta0+L6(CRIM[j],ZN[j],INDUS[j],CHAS[j],NOX[j],RM[j],AGE[j],DIS[j],RAD[j],TAX[j],PTRATIO[j],LSTAT[j],MEDV[j],theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12)
dertheta7=dertheta0+L7(CRIM[j],ZN[j],INDUS[j],CHAS[j],NOX[j],RM[j],AGE[j],DIS[j],RAD[j],TAX[j],PTRATIO[j],LSTAT[j],MEDV[j],theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12)
dertheta8=dertheta0+L8(CRIM[j],ZN[j],INDUS[j],CHAS[j],NOX[j],RM[j],AGE[j],DIS[j],RAD[j],TAX[j],PTRATIO[j],LSTAT[j],MEDV[j],theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12)
dertheta9=dertheta0+L9(CRIM[j],ZN[j],INDUS[j],CHAS[j],NOX[j],RM[j],AGE[j],DIS[j],RAD[j],TAX[j],PTRATIO[j],LSTAT[j],MEDV[j],theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12)
dertheta10=dertheta0+L10(CRIM[j],ZN[j],INDUS[j],CHAS[j],NOX[j],RM[j],AGE[j],DIS[j],RAD[j],TAX[j],PTRATIO[j],LSTAT[j],MEDV[j],theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12)
dertheta11=dertheta0+L11(CRIM[j],ZN[j],INDUS[j],CHAS[j],NOX[j],RM[j],AGE[j],DIS[j],RAD[j],TAX[j],PTRATIO[j],LSTAT[j],MEDV[j],theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12)
dertheta12=dertheta0+L12(CRIM[j],ZN[j],INDUS[j],CHAS[j],NOX[j],RM[j],AGE[j],DIS[j],RAD[j],TAX[j],PTRATIO[j],LSTAT[j],MEDV[j],theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12)
theta0=theta0+learning_rate*dertheta0
theta1=theta1+learning_rate*dertheta1
theta2=theta2+learning_rate*dertheta2
theta3=theta3+learning_rate*dertheta3
theta4=theta4+learning_rate*dertheta4
theta5=theta5+learning_rate*dertheta5
theta6=theta6+learning_rate*dertheta6
theta7=theta7+learning_rate*dertheta7
theta8=theta8+learning_rate*dertheta8
theta9=theta9+learning_rate*dertheta9
theta10=theta10+learning_rate*dertheta10
theta11=theta11+learning_rate*dertheta11
theta12=theta12+learning_rate*dertheta12
for k in range(l):
Loss1=Loss1+L(CRIM[k],ZN[k],INDUS[k],CHAS[k],NOX[k],RM[k],AGE[k],DIS[k],RAD[k],TAX[k],PTRATIO[k],LSTAT[k],MEDV[k],theta0,theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,theta9,theta10,theta11,theta12)
Loss.append(Loss1)
在梯度下降更新完成后,我們來看一下損失函數的收斂曲線圖
損失函數收斂圖
將特征變量放入一個數組中
特征變量數組
最后我們來查看一下測試集情況
for i in range(100):
print("true:\t{}".format(test_y[i]),end="\t")
pre = np.dot(theta,test_x[i])+theta0
print("guess:\t{}".format(pre))
plt.show()
測試集情況